This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277798 #12 Feb 16 2025 08:33:37 %S A277798 1,0,100,11,10000,1111,1000000,111111,100000000,11111111,10000000000, %T A277798 1111111111,1000000000000,111111111111,100000000000000,11111111111111, %U A277798 10000000000000000,1111111111111111,1000000000000000000,111111111111111111,100000000000000000000 %N A277798 Binary representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 1", based on the 5-celled von Neumann neighborhood. %C A277798 Initialized with a single black (ON) cell at stage zero. %C A277798 Rule numbers 1, 9, 17, 25, 257, 265, 273 and 281 all generate this sequence. %D A277798 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170. %H A277798 Robert Price, <a href="/A277798/b277798.txt">Table of n, a(n) for n = 0..126</a> %H A277798 Robert Price, <a href="/A277798/a277798.tmp.txt">Diagrams of first 20 stages</a> %H A277798 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015 %H A277798 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a> %H A277798 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a> %H A277798 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A277798 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a> %H A277798 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a> %F A277798 Conjectures from _Colin Barker_, Nov 01 2016: (Start) %F A277798 G.f.: (1 - x^2 + 11*x^3)/((1 - x)*(1 + x)*(1 - 10*x)*(1 + 10*x)). %F A277798 a(n) = 101*a(n-2) - 100*a(n-4) for n>3. %F A277798 a(n) = (-10+89*(-10)^n+10*(-1)^n+91*10^n)/180. (End) %t A277798 CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}]; %t A277798 code=1; stages=128; %t A277798 rule=IntegerDigits[code,2,10]; %t A277798 g=2*stages+1; (* Maximum size of grid *) %t A277798 a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *) %t A277798 ca=a; %t A277798 ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}]; %t A277798 PrependTo[ca,a]; %t A277798 (* Trim full grid to reflect growth by one cell at each stage *) %t A277798 k=(Length[ca[[1]]]+1)/2; %t A277798 ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}]; %t A277798 Table[FromDigits[Part[ca[[i]][[i]],Range[i,2*i-1]],10], {i,1,stages-1}] %Y A277798 Cf. A277797, A277799, A277800. %K A277798 nonn,easy %O A277798 0,3 %A A277798 _Robert Price_, Oct 31 2016