cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277800 Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 1", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 0, 4, 3, 16, 15, 64, 63, 256, 255, 1024, 1023, 4096, 4095, 16384, 16383, 65536, 65535, 262144, 262143, 1048576, 1048575, 4194304, 4194303, 16777216, 16777215, 67108864, 67108863, 268435456, 268435455, 1073741824, 1073741823, 4294967296, 4294967295
Offset: 0

Views

Author

Robert Price, Oct 31 2016

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.
Rule numbers 1, 9, 17, 25, 257, 265, 273 and 281 all generate this sequence.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];
    code=1; stages=128;
    rule=IntegerDigits[code,2,10];
    g=2*stages+1; (* Maximum size of grid *)
    a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)
    ca=a;
    ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];
    PrependTo[ca,a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k=(Length[ca[[1]]]+1)/2;
    ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
    Table[FromDigits[Part[ca[[i]][[i]],Range[i,2*i-1]],2], {i,1,stages-1}]

Formula

Conjectures from Colin Barker, Nov 01 2016: (Start)
G.f.: (1 - x^2 + 3*x^3)/((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)).
a(n) = 5*a(n-2) - 4*a(n-4) for n>3.
a(n) = (-2+(-2)^n+2*(-1)^n+3*2^n)/4. (End)