cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277820 Square array: A(r,1) = A065621(r); for c > 1, A(r,c) = A048724(A(r,c-1)), read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

This page as a plain text file.
%I A277820 #21 Nov 05 2016 07:23:01
%S A277820 1,3,2,5,6,7,15,10,9,4,17,30,27,12,13,51,34,45,20,23,14,85,102,119,60,
%T A277820 57,18,11,255,170,153,68,75,54,29,8,257,510,427,204,221,90,39,24,25,
%U A277820 771,514,765,340,359,238,105,40,43,26,1285,1542,1799,1020,937,306,187,120,125,46,31,3855,2570,2313,1028,1275,854,461,136,135,114,33,28
%N A277820 Square array: A(r,1) = A065621(r); for c > 1, A(r,c) = A048724(A(r,c-1)), read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
%C A277820 For all n >= 1, A277818 (= A268389(n)+1) gives the (one-based) index of the column where n is located in this array, while A268671(n) gives the (one-based) index of the row where it is on.
%C A277820 This array is obtained when one selects from A277320 the columns 1, 3, 5, 15, 17, 51, ..., i.e., those with an index A001317(k).
%H A277820 Antti Karttunen, <a href="/A277820/b277820.txt">Table of n, a(n) for n = 1..3321; the first 81 antidiagonals of the array</a>
%H A277820 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H A277820 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A277820 A(r,1) = A065621(r); for c > 1, A(r,c) = A048724(A(r,c-1)).
%F A277820 A(r,c) = A048675(A277810(r,c)).
%F A277820 As a composition of other permutations:
%F A277820 a(n) = A277901(A277880(n)).
%e A277820 The top left corner of the array:
%e A277820    1,  3,   5,  15,  17,   51,   85,  255,   257,   771,  1285,  3855
%e A277820    2,  6,  10,  30,  34,  102,  170,  510,   514,  1542,  2570,  7710
%e A277820    7,  9,  27,  45, 119,  153,  427,  765,  1799,  2313,  6939, 11565
%e A277820    4, 12,  20,  60,  68,  204,  340, 1020,  1028,  3084,  5140, 15420
%e A277820   13, 23,  57,  75, 221,  359,  937, 1275,  3341,  5911, 14649, 19275
%e A277820   14, 18,  54,  90, 238,  306,  854, 1530,  3598,  4626, 13878, 23130
%e A277820   11, 29,  39, 105, 187,  461,  599, 1785,  2827,  7453, 10023, 26985
%e A277820    8, 24,  40, 120, 136,  408,  680, 2040,  2056,  6168, 10280, 30840
%e A277820   25, 43, 125, 135, 393,  667, 1965, 2295,  6425, 11051, 32125, 34695
%e A277820   26, 46, 114, 150, 442,  718, 1874, 2550,  6682, 11822, 29298, 38550
%e A277820   31, 33,  99, 165, 495,  561, 1619, 2805,  7967,  8481, 25443, 42405
%e A277820   28, 36, 108, 180, 476,  612, 1708, 3060,  7196,  9252, 27756, 46260
%e A277820   21, 63,  65, 195, 325,  975, 1105, 3315,  5397, 16191, 16705, 50115
%e A277820   22, 58,  78, 210, 374,  922, 1198, 3570,  5654, 14906, 20046, 53970
%e A277820   19, 53,  95, 225, 291,  869, 1455, 3825,  4883, 13621, 24415, 57825
%e A277820   16, 48,  80, 240, 272,  816, 1360, 4080,  4112, 12336, 20560, 61680
%e A277820   49, 83, 245, 287, 801, 1379, 4005, 4335, 12593, 21331, 62965, 73247
%e A277820   50, 86, 250, 270, 786, 1334, 3930, 4590, 12850, 22102, 64250, 69390
%e A277820   55, 89, 235, 317, 839, 1481, 3675, 4845, 14135, 22873, 60395, 80957
%o A277820 (Scheme)
%o A277820 (define (A277820 n) (A277820bi (A002260 n) (A004736 n)))
%o A277820 (define (A277820bi row col) (if (= 1 col) (A065621 row) (A048724 (A277820bi row (- col 1)))))
%Y A277820 Inverse permutation: A277821.
%Y A277820 Transpose: A277819.
%Y A277820 Cf. A048724, A065621.
%Y A277820 Row 1: A001317.
%Y A277820 Column 1: A065621, column 2: A277823, column 3: A277825.
%Y A277820 Cf. A268389, A277818, A268671.
%Y A277820 Cf. also A193231, A277320, A277810, A276618 (A099884), A248513.
%Y A277820 Other related tables or permutations: A277880, A277901.
%K A277820 nonn,tabl,base
%O A277820 1,2
%A A277820 _Antti Karttunen_, Nov 01 2016