cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A277852 "Late birds" (values a(n) < a(k) for all k > n) in A075771 = quotient + remainder of Euclidean division of n^2 by prime(n).

Original entry on oeis.org

1, 2, 4, 5, 9, 15, 16, 24, 59, 61, 81, 100, 124, 129, 152, 169, 196, 249, 305, 400, 425, 475, 520, 556, 565, 676, 771, 795, 904, 939
Offset: 1

Views

Author

M. F. Hasler, Nov 25 2016

Keywords

Comments

The lower bound A075771(n) >= n^2/prime(n) ensures that a given number can't occur beyond a certain index in that sequence.
See A277853 for the corresponding indices m.

Crossrefs

Programs

  • PARI
    A277852(N,L=N^2/prime(N),A=A075771,S=List())={forstep(n=N,1,-1,A(n)
    				

Formula

a(n) = A075771(A277853(n)), i.e., equals A075771 o A277853.

A277853 Indices m of "late birds", i.e., values a(m) < a(k) for all k > m, in A075771 = quotient + remainder in Euclidean division of n^2 by prime(n).

Original entry on oeis.org

1, 2, 4, 5, 21, 27, 44, 104, 173, 365, 369, 500, 590, 735, 840, 987, 1564, 1797, 2415, 3368, 3545, 4025, 4466, 5018, 5477, 6686, 7239, 8025, 8182, 9369
Offset: 1

Views

Author

M. F. Hasler, Nov 25 2016

Keywords

Comments

See A277852 (= A075771 o A277853) for the corresponding values of the "late birds".

Crossrefs

Programs

  • PARI
    A277853(N,L=N^2/prime(N),A=A075771,S=List())={forstep(n=N,1,-1,A(n)
    				

A277851 Numbers not occurring in A075771 (= q(n) + r(n), with n^2 = prime(n)*q(n) + r(n), 0 <= r(n) < prime(n)).

Original entry on oeis.org

3, 6, 7, 8, 11, 13, 14, 18, 19, 20, 21, 22, 23, 25, 26, 29, 30, 32, 34, 35, 38, 39, 40, 43, 44, 45, 47, 51, 53, 54, 56, 58, 62, 67, 68, 69, 70, 71, 72, 74, 75, 77, 78, 80, 82, 83, 87, 89, 90, 91, 92, 94, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 115, 117, 118, 119, 120, 122, 123, 125, 126
Offset: 1

Views

Author

M. F. Hasler, Nov 25 2016

Keywords

Comments

The lower bound A075771(n) >= n^2/prime(n) ensures that a given number can't occur beyond a certain index in that sequence.

Crossrefs

Programs

  • Mathematica
    mx = 6300; Take[ Complement[ Range@ mx, Array[Plus @@ IntegerDigits[#^2, Prime[#]] &, mx]], mx/90] (* Robert G. Wilson v, Nov 25 2016 *)
  • PARI
    A277851_vec(N,L=N^2\prime(N),A=A075771)=setminus([1..L],Set(vector(N,n,A(n))))
Showing 1-3 of 3 results.