cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277855 Irregular triangle read by rows: T(n,k) is the maximum length of the longest common subsequence of k distinct permutations of n items with n>=1 and 1<=k<=n!

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 1, 1, 1, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Cees H. Elzinga, Nov 02 2016

Keywords

Comments

The formulas given below are correct. The sequence can be used to normalize the length of the longest common subsequence of a set of k full preference orderings relative to the maximum attainable length. This normalized number is a measure of concordance in the set of preference orderings.
The run lengths are given by A130477. - Andrey Zabolotskiy, Nov 02 2016

Examples

			The permutations {abc, acb} have 2 longest common subsequences of length 2: ab and ac. The permutations {abc, acb, cab} have one longest common subsequence: ab of length 2. The formula above yields T(3,3)= 2.
The triangle begins:
1
2,1
3,2,2,1,1,1
4,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1
5,4,4,4,4,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,...
		

Crossrefs

A277517: the maximum number of common subsequences of k distinct permutations of n items.
A152072: the maximum number of length-k longest common subsequences of a pair of length-n strings.

Programs

  • Mathematica
    Flatten[Table[(n - Select[Range@ n, Function[j, Binomial[n, n - j + 1] (j - 1)! + 1 <= k <= Binomial[n, n - j] j!]]) /. {} -> {n}, {n, 5}, {k, n!}], {3}] // Flatten (* Michael De Vlieger, Nov 04 2016 *)

Formula

T(n,1)=n.
For n>1, 1<=k<=n! and 1<=j<=n, T(n,k)=n-j if binomial(n,n-j+1)*(j-1)!+1<=k<=binomial(n,n-j)*j!.