A277859 Least k > 1 such that 1^(k-1) + 2^(k-1) + 3^(k-1) + … + (k-1)^(k-1) - n == 0 (mod k).
2, 3, 2, 4, 2, 7, 2, 3, 2, 11, 2, 4, 2, 3, 2, 4, 2, 19, 2, 3, 2, 23, 2, 4, 2, 3, 2, 4, 2, 31, 2, 3, 2, 5, 2, 4, 2, 3, 2, 4, 2, 9, 2, 3, 2, 47, 2, 4, 2, 3, 2, 4, 2, 5, 2, 3, 2, 59, 2, 4, 2, 3, 2, 4, 2, 45, 2, 3, 2, 15, 2, 4, 2, 3, 2, 4, 2, 9, 2, 3, 2, 83, 2, 4, 2
Offset: 1
Examples
a(8) = 3 because: 1^(2-1) - 8 = -7 but -7 mod 2 = 1; 1^(3-1) + 2^(3-1) - 8 = -3 and -3 mod 3 = 0;
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..1000
Programs
-
Maple
P:=proc(q) local j,k,n; for n from 1 to q do for k from 2 to q do if (add(j^(k-1),j=1..k-1)-n) mod k=0 then print(k); break; fi; od; od; end: P(10^3);
Comments