A277860 a(n) = Sum_{k=0..n-1} binomial(4k, 2k+1)*binomial(2k, k)*48^(n-1-k).
0, 8, 720, 50400, 3220000, 196885920, 11756961216, 692835631488, 40536961717824, 2363784447147552, 137716866109432896, 8030173585594013568, 469162781054378536320, 27486632292027996114560, 1615617140290621588826880, 95302760085090826490672640
Offset: 1
Keywords
Examples
a(1) = 0 since binomial(4*0, 2*0+1)*binomial(2*0, 0)*48^(1-1-0) = 0. a(2) = 8 since Sum_{k=0..1} binomial(4k, 2k+1)*binomial(2k, k)*48^(2-1-k) = binomial(4, 2+1)*binomial(2, 1)*48^0 = 8.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100
- Zhi-Wei Sun, Super congruences and Euler numbers, Sci. China Math. 54(2011), no.12, 2509--2535.
- Zhi-Wei Sun, New series for some special values of L-functions, Nanjing Univ. J. Math. Biquarterly 32(2015), no.2, 189-218.
- Zhi-Wei Sun, Supercongruences involving Lucas sequences, arXiv:1610.03384 [math.NT], 2016.
Programs
-
Mathematica
a[n_]:=Sum[Binomial[4k,2k+1]Binomial[2k,k]48^(n-1-k),{k,0,n-1}] Table[a[n],{n,1,16}]
Formula
a(n) ~ 2^(6*n - 9/2) / (Pi*n). - Vaclav Kotesovec, Nov 06 2021
Comments