A277870 Ordered number of unit edges needed to build every 4-orthotope from hypercubes.
32, 52, 72, 84, 92, 112, 116, 132, 135, 148, 152, 160, 172, 180, 186, 192, 204, 212, 216, 232, 237, 244, 248, 252, 256, 260, 272, 276, 288, 292, 297, 308, 312, 316, 326, 332, 336, 339, 340, 352, 372, 378, 380, 384, 390, 392, 396, 404, 408, 412, 415, 424, 428
Offset: 1
Keywords
Examples
a(1)=32 as this is the number of edges in the unit hypercube.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Wikipedia, Symmetric polynomial
Programs
-
Mathematica
Edges[x_,y_,z_,w_]:=(4*x*y*z*w)+3*((w*x*z)+(w*y*z)+(w*x*y)+(x*y*z))+2*((w*x)+(w*y)+(w*z)+(x*y)+(x*z)+(y*z))+x+y+z+w;inputs=Tuples[Range[s],4];Union[Table[Edges[inputs[[k]][[1]],inputs[[k]][[2]],inputs[[k]][[3]],inputs[[k]][[4]]],{k,1,Length[inputs]}]] Accuracy to 170 terms is achieved for s>=5764801, and for the entire list in the limit as s approaches infinity.
-
PARI
list(lim)=my(v=List()); for(w=1,(lim-12)\20, for(x=1, min((lim-8*w-4)\(12*w+8),w), for(y=1,min((lim-5*w*x-3*x-3*w-1)\(7*w*x+5*x+5*w+3),x), forstep(n=((7*w+5)*y+(5*w+3))*x+(5*w + 3)*y+3*w+1, lim, ((4*w+3)*y+3*w+2)*x+(3*w+2)*y+2*w+1, listput(v,n))))); Set(v) \\ Charles R Greathouse IV, Nov 05 2016
Formula
These numbers are of the form: 4wxyz + 3(wxz+wyz+wxy+xyz) + 2(wx+wy+wz+xy+xz+yz) + w+x+y+z for any positive integers w, x, y, z.
Comments