cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277913 Nonsquare numbers n for which the smallest y>0 solution of the Pellian equation x^2 - n*y^2 = 1 divides n.

This page as a plain text file.
%I A277913 #28 Dec 04 2016 03:55:06
%S A277913 2,3,6,8,12,15,20,24,30,35,42,48,56,60,63,68,72,75,78,80,84,87,90,99,
%T A277913 110,120,132,143,156,168,180,182,195,210,224,240,248,255,264,272,288,
%U A277913 306,312,318,323,330,336,342,360,380,399,420,440,462,483,506,528,552,564,575,588
%N A277913 Nonsquare numbers n for which the smallest y>0 solution of the Pellian equation x^2 - n*y^2 = 1 divides n.
%F A277913 Lim_{n->infinity} a(n+1)/a(n) = 1 (conjectured).
%e A277913 2 is in the sequence because A002349(2)=2 divides 2.
%e A277913 180 is in the sequence because A002349(180)=12 divides 180.
%t A277913 PellSolve[(m_Integer)?Positive] :=
%t A277913   Module[{cf, n, s}, cof = ContinuedFraction[Sqrt[m]];
%t A277913    n = Length[Last[cof]]; If[OddQ[n], n = 2*n];
%t A277913    s = FromContinuedFraction[
%t A277913      ContinuedFraction[Sqrt[m], n]]; {Numerator[s], Denominator[s]}];
%t A277913 f[n_] := If[! IntegerQ[Sqrt[n]], PellSolve[n][[2]]];
%t A277913 Select[Range[250], Mod[#, f[#]] == 0 &]
%Y A277913 See A002349 for the smallest y>0 solution of x^2 - n*y^2 = 1.
%K A277913 nonn
%O A277913 1,1
%A A277913 _Salvador Cerdá_, Nov 16 2016
%E A277913 More terms from _Michel Marcus_, Dec 04 2016