This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277919 #36 Sep 27 2022 10:36:04 %S A277919 1,1,1,3,2,1,7,6,3,1,15,16,10,4,1,31,40,30,15,5,1,63,96,84,50,21,6,1, %T A277919 127,224,224,154,77,28,7,1,255,512,576,448,258,112,36,8,1,511,1152, %U A277919 1440,1248,810,405,156,45,9,1,1023,2560,3520,3360,2420,1362,605,210,55,10,1 %N A277919 Triangle read by rows: CL(n,k) is the number of labeled subgraphs with k edges of the n-cycle C_n. %H A277919 Andrew Howroyd, <a href="/A277919/b277919.txt">Table of n, a(n) for n = 0..1274</a> %H A277919 Thomas Selig, <a href="https://arxiv.org/abs/2202.06487">Combinatorial aspects of sandpile models on wheel and fan graphs</a>, arXiv:2202.06487 [math.CO], 2022. %F A277919 The identity CL(n,k) = 2^(n-2*k) * CL(n,n-k) can be proved combinatorially. %F A277919 G.f.: (1 - 2*x + 2*x^2)/((1-x)*(1 - y*x - 2*x + y*x^2)). - _Andrew Howroyd_, Sep 27 2019 %e A277919 For row 3 of the triangle below: there are 7 labeled subgraphs of the triangle C_3 with 0 edges, 6 with 1 edge, 3 with 2 edges, and 1 with 3 edges (C_3 itself). %e A277919 Triangle begins: %e A277919 1; %e A277919 1, 1; %e A277919 3, 2, 1; %e A277919 7, 6, 3, 1; %e A277919 15, 16, 10, 4, 1; %e A277919 31, 40, 30, 15, 5, 1; %e A277919 63, 96, 84, 50, 21, 6, 1; %e A277919 127, 224, 224, 154, 77, 28, 7, 1; %e A277919 255, 512, 576, 448, 258, 112, 36, 8, 1; %e A277919 511, 1152, 1440, 1248, 810, 405, 156, 45, 9, 1; %e A277919 1023, 2560, 3520, 3360, 2420, 1362, 605, 210, 55, 10, 1; %e A277919 ... %o A277919 (PARI) T(n)={[Vecrev(p) | p<-Vec((1 - 2*x + 2*x^2)/((1-x)*(1 - y*x - 2*x + y*x^2)) + O(x*x^n))]} %o A277919 { my(A=T(12)); for(n=1, #A, print(A[n])) } \\ _Andrew Howroyd_, Sep 27 2019 %Y A277919 Row sums give A005592. %Y A277919 Middle diagonal gives A110170. %K A277919 nonn,tabl %O A277919 0,4 %A A277919 _John P. McSorley_, Nov 03 2016 %E A277919 More terms from _John P. McSorley_, Nov 17 2016