This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277929 #16 Apr 01 2025 11:34:53 %S A277929 1,1,0,15,0,63,0,255,0,1023,0,4095,0,16383,0,65535,0,262143,0,1048575, %T A277929 0,4194303,0,16777215,0,67108863,0,268435455,0,1073741823,0, %U A277929 4294967295,0,17179869183,0,68719476735,0,274877906943,0,1099511627775,0,4398046511103,0 %N A277929 Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 5", based on the 5-celled von Neumann neighborhood. %C A277929 Initialized with a single black (ON) cell at stage zero. %C A277929 Appears do differ from A277928 only at n=1. - _R. J. Mathar_, Mar 27 2025 %D A277929 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170. %H A277929 Robert Price, <a href="/A277929/b277929.txt">Table of n, a(n) for n = 0..126</a> %H A277929 Robert Price, <a href="/A277929/a277929.tmp.txt">Diagrams of first 20 stages</a> %H A277929 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015 %H A277929 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a> %H A277929 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a> %H A277929 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A277929 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a> %H A277929 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a> %F A277929 Conjectures from _Colin Barker_, Nov 05 2016: (Start) %F A277929 a(n) = 0 for n>1 and even. %F A277929 a(n) = 2^n-1-(-2)^n for n>1 and odd. %F A277929 a(n) = 5*a(n-2)-4*a(n-4) for n>5. %F A277929 G.f.: (1+x-5*x^2+10*x^3+4*x^4-8*x^5) / ((1-x)*(1+x)*(1-2*x)*(1+2*x)). (End) %t A277929 CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}]; %t A277929 code=5; stages=128; %t A277929 rule=IntegerDigits[code,2,10]; %t A277929 g=2*stages+1; (* Maximum size of grid *) %t A277929 a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *) %t A277929 ca=a; %t A277929 ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}]; %t A277929 PrependTo[ca,a]; %t A277929 (* Trim full grid to reflect growth by one cell at each stage *) %t A277929 k=(Length[ca[[1]]]+1)/2; %t A277929 ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}]; %t A277929 Table[FromDigits[Part[ca[[i]][[i]],Range[i,2*i-1]],2], {i,1,stages-1}] %Y A277929 Cf. A277926, A277927, A277928. %K A277929 nonn,easy %O A277929 0,4 %A A277929 _Robert Price_, Nov 04 2016