cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277930 Array of coefficients a(k,n) of the formal power series A(k,x) read by upwards antidiagonals, where A(k,x) = ((2*k+1)*x+sqrt(1+4*k*(k+1)*x^2))/(1-x^2), k>=0.

This page as a plain text file.
%I A277930 #22 Jan 18 2025 17:21:00
%S A277930 1,1,1,1,3,1,1,5,5,1,1,7,13,3,1,1,9,25,5,-3,1,1,11,41,7,-59,3,1,1,13,
%T A277930 61,9,-263,5,29,1,1,15,85,11,-759,7,805,3,1,1,17,113,13,-1739,9,6649,
%U A277930 5,-131,1,1,19,145,15,-3443,11,31241,7,-12155,3,1,1,21,181,17,-6159,13,106261,9,-200711,5,765,1
%N A277930 Array of coefficients a(k,n) of the formal power series A(k,x) read by upwards antidiagonals, where A(k,x) = ((2*k+1)*x+sqrt(1+4*k*(k+1)*x^2))/(1-x^2), k>=0.
%C A277930 The A(k,x) satisfy A(k,x)^2 = 1+(4*k+2)*x*A(k,x)+x^2*A(k,x)^2 for k>=0.
%C A277930 The terms of odd-numbered columns a(k,2*n+1) are simple with (2*k+1)*x/(1-x^2), analogous the even-numbered columns a(k,2*n) with the o.g.f. of A000108.
%F A277930 a(k,0) = 1 and a(k,2*n+2) = 1-2*(Sum_{i=0..n} A000108(i)*(-k*(k+1))^(i+1)) and a(k,2*n+1) = 2*k+1 for k >= 0 and n >= 0.
%F A277930 A(k,x) = (1+(2*k+1)*x+2*k*(k+1)*x^2*C(-k*(k+1)*x^2))/(1-x^2) for k >= 0, where C is the o.g.f. of A000108.
%F A277930 A(k,x)*A(k,-x) = 1/(1-x^2) for k >= 0.
%F A277930 Conjecture: a(k,2*n+2) = 1+2*k+2*(-k)^(n+2)*(Sum_{i=0..n} A234950(n,i)*k^i) for k>=0 and n>=0. - _Werner Schulte_, Aug 03 2017
%e A277930 The terms define the array a(k,n) for k >= 0 and n >= 0, i.e.,
%e A277930 k\n  0   1    2   3       4   5        6   7           8   9         10  11  ...
%e A277930 0:   1   1    1   1       1   1        1   1           1   1          1   1  ...
%e A277930 1:   1   3    5   3      -3   3       29   3        -131   3        765   3  ...
%e A277930 2:   1   5   13   5     -59   5      805   5      -12155   5     205573   5  ...
%e A277930 3:   1   7   25   7    -263   7     6649   7     -200711   7    6766585   7  ...
%e A277930 4:   1   9   41   9    -759   9    31241   9    -1568759   9   88031241   9  ...
%e A277930 5:   1  11   61  11   -1739  11   106261  11    -7993739  11  672406261  11  ...
%e A277930 6:   1  13   85  13   -3443  13   292909  13   -30824051  13  ...
%e A277930 7:   1  15  113  15   -6159  15   696305  15   -97648655  15  ...
%e A277930 8:   1  17  145  17  -10223  17  1482769  17  -267255791  17  ...
%e A277930 9:   1  19  181  19  -16019  19  2899981  19  ...
%e A277930 10:  1  21  221  21  -23979  21  5300021  21  ...
%e A277930 etc.
%e A277930 The formal power series corresponding to row 2 is A(2,x) = 1+5*x+13*x^2+5*x^3 ..
%e A277930 The terms define the triangle T(k,n) = a(k-n,n) for 0 <= n <=k, i.e.,
%e A277930 k\n  0  1   2  3   4  5  ...
%e A277930 0:   1
%e A277930 1:   1  1
%e A277930 2:   1  3   1
%e A277930 3:   1  5   5  1
%e A277930 4:   1  7  13  3   1
%e A277930 5:   1  9  25  5  -3  1
%e A277930 etc.
%t A277930 A[k_, n_]:=If[n==0, 1, If[EvenQ[n], 1 - 2 Sum[CatalanNumber[i] (-k(k + 1))^(i + 1), {i, 0, (n - 2)/2}], 2k + 1]]; Table[A[n - k, k], {n, 0, 12}, {k, 0, n}]//Flatten (* _Indranil Ghosh_, Aug 03 2017 *)
%o A277930 (Python)
%o A277930 from sympy import catalan
%o A277930 def A(k, n): return 1 if n==0 else 1 - 2*sum([catalan(i)*(-k*(k + 1))**(i + 1) for i in range(n//2)]) if n%2==0 else 2*k + 1
%o A277930 for n in range(13): print([A(n - k, k) for k in range(n + 1)]) # _Indranil Ghosh_, Aug 03 2017
%Y A277930 Cf. A000108, A234950.
%K A277930 sign,easy,tabl
%O A277930 0,5
%A A277930 _Werner Schulte_, Nov 04 2016