cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277952 Binary representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 14", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 11, 110, 1110, 11010, 111010, 1101010, 11101010, 110101010, 1110101010, 11010101010, 111010101010, 1101010101010, 11101010101010, 110101010101010, 1110101010101010, 11010101010101010, 111010101010101010, 1101010101010101010, 11101010101010101010
Offset: 0

Views

Author

Robert Price, Nov 05 2016

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];
    code=14; stages=128;
    rule=IntegerDigits[code,2,10];
    g=2*stages+1; (* Maximum size of grid *)
    a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)
    ca=a;
    ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];
    PrependTo[ca,a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k=(Length[ca[[1]]]+1)/2;
    ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
    Table[FromDigits[Part[ca[[i]][[i]],Range[1,i]],10], {i,1,stages-1}]

Formula

Conjectures from Colin Barker, Nov 06 2016: (Start)
G.f.: (1+10*x-x^2) / ((1-x)*(1-10*x)*(1+10*x)).
a(n) = a(n-1)+100*a(n-2)-100*a(n-3) for n>2.
a(n) = (-200-9*(-10)^n+2189*10^n)/1980. (End)