This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277954 #13 Feb 16 2025 08:33:37 %S A277954 1,3,6,14,26,58,106,234,426,938,1706,3754,6826,15018,27306,60074, %T A277954 109226,240298,436906,961194,1747626,3844778,6990506,15379114, %U A277954 27962026,61516458,111848106,246065834,447392426,984263338,1789569706,3937053354,7158278826 %N A277954 Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 14", based on the 5-celled von Neumann neighborhood. %C A277954 Initialized with a single black (ON) cell at stage zero. %D A277954 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170. %H A277954 Robert Price, <a href="/A277954/b277954.txt">Table of n, a(n) for n = 0..126</a> %H A277954 Robert Price, <a href="/A277954/a277954.tmp.txt">Diagrams of the first 20 stages</a> %H A277954 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015 %H A277954 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a> %H A277954 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a> %H A277954 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A277954 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a> %H A277954 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a> %H A277954 Robert Price, <a href="/A277954/a277954.tmp.txt">Diagrams of the first 20 stages</a> %F A277954 Conjectures from _Colin Barker_, Nov 06 2016: (Start) %F A277954 G.f.: (1+2*x-x^2) / ((1-x)*(1-2*x)*(1+2*x)). %F A277954 a(n) = a(n-1)+4*a(n-2)-4*a(n-3) for n>2. %F A277954 a(n) = (-8-(-2)^n+21*2^n)/12. (End) %t A277954 CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}]; %t A277954 code=14; stages=128; %t A277954 rule=IntegerDigits[code,2,10]; %t A277954 g=2*stages+1; (* Maximum size of grid *) %t A277954 a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *) %t A277954 ca=a; %t A277954 ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}]; %t A277954 PrependTo[ca,a]; %t A277954 (* Trim full grid to reflect growth by one cell at each stage *) %t A277954 k=(Length[ca[[1]]]+1)/2; %t A277954 ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}]; %t A277954 Table[FromDigits[Part[ca[[i]][[i]],Range[1,i]],2], {i,1,stages-1}] %t A277954 LinearRecurrence[{1, 4, -4}, {1, 3, 6}, 31] (* or *) %t A277954 CoefficientList[ Series[(1 + 2x - x^2)/(1 - x - 4x^2 + 4x^3), {x, 0, 31}], x] (* _Robert G. Wilson v_, Nov 05 2016 *) %Y A277954 Cf. A277952, A277953, A277955. %K A277954 nonn,easy %O A277954 0,2 %A A277954 _Robert Price_, Nov 05 2016