This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277958 #21 Nov 10 2017 07:07:02 %S A277958 1,8,44,192,726,2464,7704,22521,62281,164252,415796,1015334,2401462, %T A277958 5519640,12363062,27047913,57917068,121588588,250638216,507974950, %U A277958 1013409244,1992161935,3862461694,7392045512,13975011909,26116935550,48277368020,88320521108,159993054081 %N A277958 Expansion of Product_{n>=1} (1 - x^(7*n))^7/(1 - x^n)^8 in powers of x. %H A277958 Seiichi Manyama, <a href="/A277958/b277958.txt">Table of n, a(n) for n = 0..1000</a> %H A277958 Wikipedia, <a href="https://en.wikipedia.org/wiki/Ramanujan%27s_congruences">Ramanujan's congruences</a> %F A277958 G.f.: Product_{n>=1} (1 - x^(7*n))^7/(1 - x^n)^8. %F A277958 A213261(n) = 7*A160527(n) + 49*a(n - 1) for n > 0 due to Ramanujan's congruences. %F A277958 a(n) ~ exp(Pi*sqrt(98*n/21)) / (1372*sqrt(3)*n). - _Vaclav Kotesovec_, Nov 10 2017 %e A277958 G.f.: 1 + 8*x + 44*x^2 + 192*x^3 + 726*x^4 + 2464*x^5 + 7704*x^6 + ... %t A277958 nmax = 20; CoefficientList[Series[Product[(1 - x^(7*k))^7 /(1 - x^k)^8 , {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 10 2017 *) %Y A277958 Cf. A071746, A160527, A213261. %K A277958 nonn %O A277958 0,2 %A A277958 _Seiichi Manyama_, Nov 06 2016