cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277963 G.f.: 1/(1+x) * Product_{k>=1} 1/(1-x^k)^k.

This page as a plain text file.
%I A277963 #7 Nov 06 2016 06:04:48
%S A277963 1,0,3,3,10,14,34,52,108,174,326,533,946,1539,2628,4251,7046,11288,
%T A277963 18313,29017,46261,72533,113942,176841,274353,421680,647065,985593,
%U A277963 1497641,2261971,3406992,5105317,7628112,11346861,16829094,24861952,36623009,53756775
%N A277963 G.f.: 1/(1+x) * Product_{k>=1} 1/(1-x^k)^k.
%C A277963 Convolution of A000219 and A033999.
%H A277963 Vaclav Kotesovec, <a href="/A277963/b277963.txt">Table of n, a(n) for n = 0..10000</a>
%F A277963 a(n) = Sum_{k=0..n} (-1)^(n-k)*A000219(k).
%F A277963 a(n) ~ Zeta(3)^(7/36) * exp(3 * Zeta(3)^(1/3) * (n/2)^(2/3) + 1/12) / (A * sqrt(3*Pi) * 2^(47/36) * n^(25/36)), where A = A074962 is the Glaisher-Kinkelin constant.
%t A277963 CoefficientList[Series[1/(1+x)*Product[1/(1-x^k)^k, {k, 1, 50}], {x, 0, 50}], x]
%Y A277963 Cf. A000219, A091360, A087787, A191659.
%K A277963 nonn
%O A277963 0,3
%A A277963 _Vaclav Kotesovec_, Nov 06 2016