This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277969 #24 Oct 23 2018 19:34:25 %S A277969 1,-1,2,5,19,75,305,1270,5390,23236,101480,448085,1997115,8973255, %T A277969 40602093,184853055,846206025,3892585325,17984308775,83417287855, %U A277969 388297304825,1813341109825,8493372326675,39889629750600,187812852106636 %N A277969 a(n) = Sum_{k=0..n} binomial(n-3,n-k)*Catalan(k). %H A277969 Robert Israel, <a href="/A277969/b277969.txt">Table of n, a(n) for n = 0..1430</a> %F A277969 G.f.: ((1-x)^3*(1-sqrt((5*x-1)/(x-1))))/(2*x). %F A277969 a(n) ~ 8*5^(n-3/2) / (sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Nov 07 2016 %F A277969 (5*n-10)*a(n)-(7+6*n)*a(n+1)+(n+3)*a(n+2)=0 for n >= 2. - _Robert Israel_, Nov 21 2016 %F A277969 a(n) = A055452(n+1) for n > 2. - _Georg Fischer_, Oct 23 2018 %p A277969 f:= gfun:-rectoproc({(5*n-10)*a(n)+(-7-6*n)*a(n+1)+(n+3)*a(n+2),a(0) = 1, a(1) = -1, a(2) = 2, a(3) = 5},a(n),remember): %p A277969 map(f, [$0..30]); # _Robert Israel_, Nov 21 2016 %t A277969 CoefficientList[Series[((1 - x)^3 (1 - Sqrt[(5 x - 1) / (x - 1)])) / (2 x), {x, 0, 25}], x] (* _Vincenzo Librandi_, Nov 07 2016 *) %o A277969 (Maxima) %o A277969 a(n):=sum((binomial(2*k,k)*binomial(n-3,n-k))/(k+1),k,0,n); %o A277969 (PARI) x='x+O('x^50); Vec(((1-x)^3*(1-sqrt((5*x-1)/(x-1))))/(2*x)) \\ _G. C. Greubel_, Apr 09 2017 %Y A277969 Cf. A000108, A055452. %K A277969 sign %O A277969 0,3 %A A277969 _Vladimir Kruchinin_, Nov 06 2016