This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277986 #27 Sep 08 2022 08:46:17 %S A277986 -14,60,134,208,282,356,430,504,578,652,726,800,874,948,1022,1096, %T A277986 1170,1244,1318,1392,1466,1540,1614,1688,1762,1836,1910,1984,2058, %U A277986 2132,2206,2280,2354,2428,2502,2576,2650,2724,2798,2872,2946,3020,3094,3168 %N A277986 a(n) = 74*n - 14. %C A277986 For n >= 1, a(n) is the first Zagreb index of the tetrameric 1,3-adamantane TA[n]. The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph. The pictorial definition of the tetrameric 1,3-adamantane can be viewed in the G. H. Fath-Tabar et al. reference. %C A277986 The M-polynomial of the tetrameric 1,3-adamantane TA[n] is M(TA[n], x, y) = 6*(n+1)*x^2*y^3 + 6*(n-1)*x^2*y^4 + (n-1)*x^4*y^4. %H A277986 Emeric Deutsch and Sandi Klavžar, <a href="http://dx.doi.org/10.22052/ijmc.2015.10106">M-polynomial and degree-based topological indices</a>, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102. %H A277986 G. H. Fath-Tabar, A. Azad, and N. Elahinezhad, <a href="http://en.journals.sid.ir/ViewPaper.aspx?ID=254060">Some topological indices of tetrameric 1,3-adamantane</a>, Iranian J. Math. Chemistry, 1, No. 1, 2010, 111-118. %H A277986 Ivan Gutman and Kinkar C. Das, <a href="http://match.pmf.kg.ac.rs/electronic_versions/Match50/match50_83-92.pdf">The first Zagreb index 30 years after</a>, MATCH Commun. Math. Comput. Chem. 50, 2004, 83-92. %H A277986 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1). %F A277986 G.f.: 2*(44*x - 7)/(1-x)^2. %F A277986 a(n) = 2*a(n-1) - a(n-2). - _Vincenzo Librandi_, Nov 13 2016 %p A277986 seq(74*n-14, n = 0..40); %t A277986 Table[74n - 14, {n, 0, 50}] (* _Harvey P. Dale_, Mar 08 2020 *) %o A277986 (Magma) [74*n-14: n in [0..45]]; // _Vincenzo Librandi_, Nov 13 2016 %o A277986 (Scala) (0 to 48).map(74 * _ - 14) // _Alonso del Arte_, Mar 11 2020 %Y A277986 Cf. A277987. %K A277986 sign,easy %O A277986 0,1 %A A277986 _Emeric Deutsch_, Nov 12 2016