This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277993 #11 Dec 16 2017 11:48:46 %S A277993 23,53,89,113,131,251,293,491,683,719,953,1439,1499,1511,1733,2393, %T A277993 3491,3779,5171,7043,7151,7433,7649,7901,8069,8663,9689,10781,12011, %U A277993 12653,13049,13229,13451,13553,14669,15569,16001,16253,18899,19709,20411,22469,22751,23099 %N A277993 Sophie Germain primes p such that p + 2 and p - 2 are semiprimes. %C A277993 Intersection of A005384 and A063643. %H A277993 K. D. Bajpai, <a href="/A277993/b277993.txt">Table of n, a(n) for n = 1..4000</a> %e A277993 a(1) = 23 is Sophie Germain prime because 2*23 + 1 = 47 is prime. Also, 23 + 2 = 25 = 5*5; 23 - 2 = 21 = 7*3; are both semiprime. %e A277993 a(2) = 53 is Sophie Germain prime because 2*53 + 1 = 107 is prime. Also, 53 + 2 = 55 = 11*5; 23 - 2 = 51 = 17*3; are both semiprime. %t A277993 Select[Select[Prime[Range[10000]], PrimeQ[2 # + 1] &], PrimeOmega[# - 2] == 2 && PrimeOmega[# + 2] == 2 &] %t A277993 Select[Prime[Range[3000]],PrimeQ[2#+1]&&PrimeOmega[#+{2,-2}]=={2,2}&] (* _Harvey P. Dale_, Dec 16 2017 *) %o A277993 (PARI) is(n) = ispseudoprime(n) && ispseudoprime(2*n+1) && bigomega(n+2)==2 && bigomega(n-2)==2 \\ _Felix Fröhlich_, Nov 07 2016 %Y A277993 Cf. A005384, A063637, A063638, A063643. %K A277993 nonn %O A277993 1,1 %A A277993 _K. D. Bajpai_, Nov 07 2016