cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277996 Number of free pure symmetric multifunctions (with empty expressions allowed) with one atom and n positions.

This page as a plain text file.
%I A277996 #33 Apr 30 2019 21:50:00
%S A277996 1,1,2,5,13,36,102,299,892,2713,8364,26108,82310,261804,838961,
%T A277996 2706336,8780725,28636157,93818641,308641277,1019140129,3376604826,
%U A277996 11221805968,37399728251,124967677989,418564867751,1405030366113,4726036692421,15927027834163,53770343259613
%N A277996 Number of free pure symmetric multifunctions (with empty expressions allowed) with one atom and n positions.
%C A277996 Also the number of distinct orderless Mathematica expressions with one atom and n positions.
%H A277996 Andrew Howroyd, <a href="/A277996/b277996.txt">Table of n, a(n) for n = 1..200</a>
%H A277996 Mathematica Reference, <a href="http://reference.wolfram.com/mathematica/ref/Orderless.html">Orderless</a>.
%F A277996 From _Ilya Gutkovskiy_, Apr 30 2019: (Start)
%F A277996 G.f. A(x) satisfies: A(x) = x * (1 + A(x) * exp(Sum_{k>=1} A(x^k)/k)).
%F A277996 G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * (1 + (Sum_{n>=1} a(n)*x^n) * Product_{n>=1} 1/(1 - x^n)^a(n)). (End)
%e A277996 The a(5)=13 Mathematica expressions are:
%e A277996 x[x,x,x]
%e A277996 x[x,x][]   x[x][x]   x[][x,x]  x[x,x[]]  x[x[x]]
%e A277996 x[x][][]   x[][x][]  x[][][x]  x[x[]][]  x[][x[]]  x[x[][]]
%e A277996 x[][][][]
%t A277996 multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
%t A277996 a[n_]:=a[n]=If[n===1,1,Sum[a[k]*Sum[Product[multing[a[First[s]],Length[s]],{s,Split[p]}],{p,IntegerPartitions[n-k-1]}],{k,1,n-1}]];
%t A277996 Array[a,30]
%o A277996 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
%o A277996 seq(n)={my(v=[1]); for(n=2, n, my(t=EulerT(v)); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ _Andrew Howroyd_, Aug 19 2018
%Y A277996 Cf. A000108, A001003, A005043, A052893, A279944, A280000, A317658.
%K A277996 nonn
%O A277996 1,3
%A A277996 _Gus Wiseman_, Dec 24 2016