cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277999 Sum of distances between leftmost and rightmost peaks in all bargraphs of semiperimeter n.

This page as a plain text file.
%I A277999 #14 Feb 25 2019 08:24:06
%S A277999 0,0,0,0,0,1,9,53,261,1165,4887,19642,76519,291095,1086946,3998430,
%T A277999 14530223,52272218,186467253,660449671,2325124444,8143334776,
%U A277999 28393762841,98621419068,341403900888,1178425064256,4057244213071,13937739553781,47786215201214,163554669548711
%N A277999 Sum of distances between leftmost and rightmost peaks in all bargraphs of semiperimeter n.
%H A277999 A. Blecher, C. Brennan, and A. Knopfmacher, <a href="http://dx.doi.org/10.1080/0035919X.2015.1059905">Peaks in bargraphs</a>, Trans. Royal Soc. South Africa, 71, No. 1, 2016, 97-103.
%F A277999 G.f.: -(4*x^6*(3-2*x^3+3*x^4 - sqx + x^2*(4-3*sqx) + 2*x*(sqx - 4))/((x^2-3*x+1)*sqx*(-1+2*x+x^2-sqx)^3)) where sqx = sqrt(x^4+2*x^2-4*x+1).
%e A277999 a(6)=1 since the bargraph with column heights 2,1,2 has a distance of 1 between first and last peak. All other bargraphs of semiperimeter 6 have at most one peak, hence 0 difference.
%o A277999 (PARI) my(x = 'x + O('x^30)); sqx = sqrt(x^4+2*x^2-4*x+1); concat(vector(5), Vec(-(4*x^6*(3-2*x^3+3*x^4 - sqx + x^2*(4-3*sqx) + 2*x*(sqx - 4))/((x^2-3*x+1)*sqx*(-1+2*x+x^2-sqx)^3)))) \\ _Michel Marcus_, Feb 25 2019
%Y A277999 Cf. A271941, A273720, A273345, A277973.
%K A277999 nonn
%O A277999 1,7
%A A277999 _Arnold Knopfmacher_, Nov 08 2016