cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278022 Squares s such that s + 2 and s - 2 are semiprime.

This page as a plain text file.
%I A278022 #9 Jun 14 2021 15:19:17
%S A278022 36,121,144,289,1764,2304,2601,2809,4225,5184,5329,6241,6889,7056,
%T A278022 8100,9409,13225,15625,17689,19881,23409,25281,27225,30276,34969,
%U A278022 35721,38025,40401,41616,42849,43681,45369,63001,69696,72361,78961,82369,84681,87025,93636,106929
%N A278022 Squares s such that s + 2 and s - 2 are semiprime.
%C A278022 Intersection of A000290 and A105571.
%H A278022 K. D. Bajpai, <a href="/A278022/b278022.txt">Table of n, a(n) for n = 1..5200</a>
%e A278022 a(1) = 36 appears in the list because 36 = 6^2 (square) and 36 + 2 = 38 = 19*2; 36 - 2 = 34 = 17*2; both are semiprime.
%e A278022 a(2) = 121 appears in the list because 121 = 11^2 (square) and 121 + 2 = 123 = 41*3;121 - 2 = 119 = 17*7; both are semiprime.
%t A278022 Select[Table[n^2, {n, 1000}], PrimeOmega[# + 2] == 2 &&  PrimeOmega[# - 2] == 2 &]
%t A278022 Select[Range[350]^2,PrimeOmega[#+{2,-2}]=={2,2}&] (* _Harvey P. Dale_, Jun 14 2021 *)
%o A278022 (PARI) for(n = 1, 1000, s = n^2; if( bigomega(s+2)==2 && bigomega(s-2)==2, print1(s, ", ")))
%Y A278022 Cf. A000290, A001358, A105571.
%K A278022 nonn
%O A278022 1,1
%A A278022 _K. D. Bajpai_, Nov 08 2016