cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278025 Number of irreducible involutions of length n avoiding the pattern {123}.

Original entry on oeis.org

1, 3, 4, 9, 16, 31, 58, 112, 211, 411, 781, 1526, 2923, 5721, 11023, 21610, 41821, 82112, 159460, 313503, 610531, 1201721, 2345734, 4621899, 9039472, 17827054, 34923997, 68930585, 135231649, 267104311, 524673184, 1036989265, 2039191564, 4032728190, 7937870407
Offset: 1

Views

Author

N. J. A. Sloane, Nov 09 2016

Keywords

Crossrefs

Cf. A278024.

Programs

  • Maple
    f:= gfun:-rectoproc({(20 + 4*n)*a(n) + (-54 - 8*n)*a(1 + n) + (25 + 3*n)*a(n + 2) + (64 + 6*n)*a(n + 3) + (11 + 3*n)*a(n + 4) + (-67 - 9*n)*a(n + 5) + (45 + 7*n)*a(n + 6) + (10 - 2*n)*a(n + 7) + (2*n + 16)*a(n + 8) + (51 + 5*n)*a(n + 9) + (-9 - n)*a(n + 10) + (-13 - n)*a(n + 11), a(0) = 0, a(1) = 1, a(2) = 3, a(3) = 4, a(4) = 9, a(5) = 16, a(6) = 31, a(7) = 58, a(8) = 112, a(9) = 211, a(10) = 411, a(11) = 781},a(n),remember):
    map(f, [$1..50]); # Robert Israel, Jul 23 2020

Formula

G.f.: ((1 + 2*x)*sqrt(1 - 4*x^2) - 1 + 4*x^2 - 2*x^3 + 2*x^4 + 4*x^5 )/((1 - 2*x)*(2*x^4 + 1 + sqrt(1 - 4*x^2))). - From Baril, corrected by Robert Israel, Jul 23 2020.

Extensions

More terms from Lars Blomberg, Nov 11 2016