A278038 Binary vectors not containing three consecutive 1's; or, representation of n in the tribonacci base.
0, 1, 10, 11, 100, 101, 110, 1000, 1001, 1010, 1011, 1100, 1101, 10000, 10001, 10010, 10011, 10100, 10101, 10110, 11000, 11001, 11010, 11011, 100000, 100001, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101010, 101011, 101100, 101101, 110000, 110001, 110010, 110011, 110100, 110101, 110110, 1000000
Offset: 0
Examples
The tribonacci numbers (as in A000073(n), for n >= 3) are 1, 2, 4, 7, 13, 24, 44, 81, ... In terms of this base, 7 is written 1000, 8 is 1001, 11 is 1100, 12 is 1101, 13 is 10000, etc. Zero is 0.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..25280
- L. Carlitz, Richard Scoville, and V. E. Hoggatt, Jr., Fibonacci Representations of Higher Order, Part 2, The Fibonacci Quarterly, Vol. 10, No. 1 (1972), pp. 43-69, 94.
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
- Eric DuchĂȘne and Michel Rigo, A morphic approach to combinatorial games: the Tribonacci case. RAIRO - Theoretical Informatics and Applications, 42, 2008, pp 375-393. See Table 2. [Also available from Numdam]
- V. E. Hoggatt, Jr. and Marjorie Bicknell-Johnson, Lexicographic Ordering and Fibonacci Representations, The Fibonacci Quarterly, Vol. 20, No. 3 (1982), pp. 193-218.
- Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
Crossrefs
Programs
-
Maple
# maximum index in A73 such that A73 <= n. A73floorIdx := proc(n) local k ; for k from 3 do if A000073(k) = n then return k ; elif A000073(k) > n then return k -1 ; end if ; end do: end proc: A278038 := proc(n) local k,L,nres ; if n = 0 then 0; else k := A73floorIdx(n) ; L := [1] ; nres := n-A000073(k) ; while k >= 4 do k := k-1 ; if nres >= A000073(k) then L := [1,op(L)] ; nres := nres-A000073(k) ; else L := [0,op(L)] ; end if ; end do: add( op(i,L)*10^(i-1),i=1..nops(L)) ; end if; end proc: seq(A278038(n),n=0..40) ; # R. J. Mathar, Jun 08 2022
-
Mathematica
t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; a[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; FromDigits @ IntegerDigits[Total[2^(s - 1)], 2]]; Array[a, 100, 0] (* Amiram Eldar, Mar 04 2022 *)
Comments