cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278041 The tribonacci representation of a(n) is obtained by appending 0,1,1 to the tribonacci representation of n (cf. A278038).

This page as a plain text file.
%I A278041 #53 Jan 05 2025 19:51:41
%S A278041 3,10,16,23,27,34,40,47,54,60,67,71,78,84,91,97,104,108,115,121,128,
%T A278041 135,141,148,152,159,165,172,176,183,189,196,203,209,216,220,227,233,
%U A278041 240,246,253,257,264,270,277,284,290,297,301,308,314,321,328,334,341,345,352,358,365,371,378,382,389,395,402,409,415
%N A278041 The tribonacci representation of a(n) is obtained by appending 0,1,1 to the tribonacci representation of n (cf. A278038).
%C A278041 This sequence gives the indices k for which A080843(k) = 2, sorted increasingly with offset 0. In the W. Lang link a(n) = C(n). - _Wolfdieter Lang_, Dec 06 2018
%C A278041 Positions of letter c in the tribonacci word t generated by a->ab, b->ac, c->a, when given offset 0. - _Michel Dekking_, Apr 03 2019
%C A278041 This sequence gives the positions of the word ac in the tribonacci word t.  This follows from the fact that the letter c is always preceded in t by the letter a, and the formula AB = C-1, where A := A003144, B := A003145, C := A003146. - _Michel Dekking_, Apr 09 2019
%H A278041 N. J. A. Sloane, <a href="/A278041/b278041.txt">Table of n, a(n) for n = 0..20000</a>
%H A278041 L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/10-1/carlitz3-a.pdf">Fibonacci representations of higher order</a>, Fib. Quart., 10 (1972), 43-69, Theorem 13.
%H A278041 Wolfdieter Lang, <a href="https://arxiv.org/abs/1810.09787">The Tribonacci and ABC Representations of Numbers are Equivalent</a>, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
%F A278041 a(n) = A003146(n+1) - 1.
%F A278041 a(n) = A003144(A003145(n)). - _N. J. A. Sloane_, Oct 05 2018
%F A278041 From _Wolfdieter Lang_, Dec 06 2018: (Start)
%F A278041 a(n) = n + 2 + A(n) + B(n), where A(n) = A278040(n) and B = A278039(n).
%F A278041 a(n) = 7*n + 3 - (z_A(n-1) + 3*z_C(n-1)), where z_A(n) = A276797(n+1) and z_C(n) = A276798(n+1) - 1, n >= 0.
%F A278041 For proofs see the W. Lang link in A080843, eqs. 37 and 40.
%F A278041 a(n) - 1 = B2(n), where B2-numbers are B-numbers from A278039 followed by a C-number from A278041. See a comment and example in A319968.
%F A278041 (End)
%e A278041 The tribonacci representation of 7 is 1000 (see A278038), so a(7) has tribonacci representation 1000011, which is 44+2+1 = 47, so a(7) = 47.
%Y A278041 Cf. A003145, A003146, A080843, A276797, A276798, A278038, A278039, A278040, A278041, A319968.
%Y A278041 By analogy with the Wythoff compound sequences A003622 etc., the nine compounds of A003144, A003145, A003146 might be called the tribonacci compound sequences. They are A278040, A278041, and A319966-A319972.
%K A278041 nonn,base,easy
%O A278041 0,1
%A A278041 _N. J. A. Sloane_, Nov 18 2016