A278046 Let v = list of denominators of Farey series of order n (see A006843); a(n) = sum of products of adjacent terms of v.
1, 4, 18, 44, 124, 186, 424, 636, 1038, 1378, 2368, 2852, 4516, 5510, 7030, 8734, 12542, 14168, 19526, 22206, 26658, 30728, 40342, 44190, 54590, 61402, 72328, 80196, 99684, 105644, 129514, 143162, 161422, 176926, 201566, 214538, 255386, 277160, 307736, 329096, 384856, 402412, 466826, 499166
Offset: 1
Keywords
Examples
When n = 4, v = [1,4,3,2,3,4,1], so a(4) = 1*4 + 4*3 + 3*2 + 2*3 + 3*4 + 4*1 = 44.
Links
- J. Lehner and M. Newman, Sums involving Farey fractions, Acta Arithmetica 15.2 (1969): 181-187.
Programs
-
Maple
Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end: ans:=[]; for n from 1 to 50 do t1:=denom(Farey(n)); t2:=add( t1[i]*t1[i+1],i=1..nops(t1)-1); ans:=[op(ans),t2]; od: ans;
Comments