This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278070 #47 Dec 03 2023 09:10:19 %S A278070 1,2,11,106,1457,25946,566827,14665106,438351041,14862109042, %T A278070 563501581931,23624177026682,1085079390005041,54185293223976266, %U A278070 2922842896378005707,169366580127359119906,10492171932362920604417,691986726674000405367266,48408260338825019327539531 %N A278070 a(n) = hypergeometric([n, -n], [], -1). %C A278070 From _Peter Bala_, Mar 12 2023: (Start) %C A278070 We conjecture that a(n+k) == a(n) (mod k) for all n and k. If true, then for each k, the sequence a(n) taken modulo k is a periodic sequence and the period divides k. For example, modulo 7 the sequence becomes [1, 2, 4, 1, 1, 4, 2, 1, 2, 4, 1, 1, 4, 2, ...], apparently a periodic sequence of period 7. %C A278070 More generally, let F(x) and G(x) denote power series with integer coefficients with F(0) = G(0) = 1. Define b(n) = n! * [x^n] exp(x*G(x))*F(x)^n. Then we conjecture that b(n+k) == b(n) (mod k) for all n and k. The present sequence is the case F(x) = 1/(1 - x), G(x) = 1. Cf. A361281. (End) %H A278070 Vincenzo Librandi, <a href="/A278070/b278070.txt">Table of n, a(n) for n = 0..370</a> %F A278070 a(-n) = a(n). %F A278070 a(n) = n! [x^n] exp((1-h(x))/2)*(1+h(x))/(2*h(x)) with h(x) = sqrt(1-4*x). %F A278070 a(n) = ((2*n-1)*a(n-2) + 4*(n*(2*n-4)+1)*a(n-1))/(2*n-3) for n>=2. %F A278070 a(n) ~ 2^(2*n-1/2) * n^n / exp(n-1/2). - _Vaclav Kotesovec_, Nov 10 2016 %F A278070 a(n) = n!*Sum_{i=0..n}(binomial(2*n-i-1,n-i)/i!). - _Vladimir Kruchinin_, Nov 23 2016 %F A278070 a(n) = n! * [x^n] exp(x)/(1 - x)^n. - _Ilya Gutkovskiy_, Sep 21 2017 %p A278070 a := n -> hypergeom([n, -n], [], -1): seq(simplify(a(n)), n=0..18); %p A278070 # Alternatively: %p A278070 a := proc(n) option remember; `if`(n<2, n+1, %p A278070 ((2*n-1)*a(n-2) + 4*(n*(2*n-4)+1)*a(n-1))/(2*n-3)) end: %p A278070 seq(a(n), n=0..18); %t A278070 Table[HypergeometricPFQ[{n, -n}, {}, -1], {n, 0, 20}] (* _Vaclav Kotesovec_, Nov 10 2016 *) %o A278070 (Sage) %o A278070 def a(): %o A278070 a, b, c, d, h, e = 1, 2, 1, 8, 4, 0 %o A278070 yield a %o A278070 while True: %o A278070 yield b %o A278070 e = c; c += 2 %o A278070 a, b = b, (c*a + h*b)//e %o A278070 d += 16; h += d %o A278070 A278070 = a() %o A278070 [next(A278070) for _ in range(19)] %o A278070 (Maxima) %o A278070 a(n):=n!*sum(binomial(2*n-i-1,n-i)/i!,i,0,n); /* _Vladimir Kruchinin_, Nov 23 2016 */ %Y A278070 Cf. A278069, A278071, A361281. %K A278070 nonn,easy %O A278070 0,2 %A A278070 _Peter Luschny_, Nov 10 2016