This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278071 #27 Sep 03 2023 10:12:36 %S A278071 1,1,-1,6,-4,1,60,-36,9,-1,840,-480,120,-16,1,15120,-8400,2100,-300, %T A278071 25,-1,332640,-181440,45360,-6720,630,-36,1,8648640,-4656960,1164240, %U A278071 -176400,17640,-1176,49,-1,259459200,-138378240,34594560,-5322240,554400,-40320,2016,-64,1 %N A278071 Triangle read by rows, coefficients of the polynomials P(n,x) = (-1)^n*hypergeom( [n,-n], [], x), powers in descending order. %H A278071 H. L. Krall and O. Fink, <a href="https://doi.org/10.1090/S0002-9947-1949-0028473-1">A New Class of Orthogonal Polynomials: The Bessel Polynomials</a>, Trans. Amer. Math. Soc. 65, 100-115, 1949. %H A278071 Herbert E. Salzer, <a href="https://doi.org/10.1090/S0025-5718-1955-0078498-1">Orthogonal Polynomials Arising in the Numerical Evaluation of Inverse Laplace Transforms</a>, Mathematical Tables and Other Aids to Computation, Vol. 9, No. 52 (Oct., 1955), pp. 164-177, (see p.174 and footnote 7). %F A278071 The P(n,x) are orthogonal polynomials. They satisfy the recurrence %F A278071 P(n,x) = ((((4*n-2)*(2*n-3)*x+2)*P(n-1,x)+(2*n-1)*P(n-2,x))/(2*n-3)) for n>=2. %F A278071 In terms of generalized Laguerre polynomials (see the Krall and Fink link): %F A278071 P(n,x) = n!*(-x)^n*LaguerreL(n,-2*n,-1/x). %e A278071 Triangle starts: %e A278071 . 1, %e A278071 . 1, -1, %e A278071 . 6, -4, 1, %e A278071 . 60, -36, 9, -1, %e A278071 . 840, -480, 120, -16, 1, %e A278071 . 15120, -8400, 2100, -300, 25, -1, %e A278071 . 332640, -181440, 45360, -6720, 630, -36, 1, %e A278071 ... %p A278071 p := n -> (-1)^n*hypergeom([n, -n], [], x): %p A278071 ListTools:-Flatten([seq(PolynomialTools:-CoefficientList(simplify(p(n)), x, termorder=reverse), n=0..8)]); %p A278071 # Alternatively the polynomials by recurrence: %p A278071 P := proc(n,x) if n=0 then return 1 fi; if n=1 then return x-1 fi; %p A278071 ((((4*n-2)*(2*n-3)*x+2)*P(n-1,x)+(2*n-1)*P(n-2,x))/(2*n-3)); %p A278071 sort(expand(%)) end: for n from 0 to 6 do lprint(P(n,x)) od; %p A278071 # Or by generalized Laguerre polynomials: %p A278071 P := (n,x) -> n!*(-x)^n*LaguerreL(n,-2*n,-1/x): %p A278071 for n from 0 to 6 do simplify(P(n,x)) od; %t A278071 row[n_] := CoefficientList[(-1)^n HypergeometricPFQ[{n, -n}, {}, x], x] // Reverse; %t A278071 Table[row[n], {n, 0, 8}] // Flatten (* _Jean-François Alcover_, Jul 12 2019 *) %t A278071 (* T(n,k)= *) t={};For[n=8,n>-1,n--,For[j=n+1,j>0,j--,PrependTo[t,(-1)^(j-n+1-Mod[n,2])*Product[(2*n-k)*k/(n-k+1),{k,j,n}]]]];t (* _Detlef Meya_, Aug 02 2023 *) %Y A278071 Cf. A278069 (x=1, row sums up to sign), A278070 (x=-1). %Y A278071 T(n,0) = Pochhammer(n, n) (cf. A000407). %Y A278071 T(n,1) = -(n+1)*(2n)!/n! (cf. A002690). %Y A278071 T(n,2) = (n+2)*(2n+1)*(2n-1)!/(n-1)! (cf. A002691). %Y A278071 T(n,n-1) = (-1)^(n+1)*n^2 for n>=1 (cf. A000290). %Y A278071 T(n,n-2) = n^2*(n^2-1)/2 for n>=2 (cf. A083374). %K A278071 sign,tabl %O A278071 0,4 %A A278071 _Peter Luschny_, Nov 10 2016