This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278073 #20 Mar 24 2020 08:40:06 %S A278073 1,0,1,0,1,20,0,1,168,1680,0,1,1364,55440,369600,0,1,10920,1561560, %T A278073 33633600,168168000,0,1,87380,42771456,2385102720,34306272000, %U A278073 137225088000,0,1,699048,1160164320,158411809920,5105916816000,54752810112000,182509367040000 %N A278073 Triangle read by rows, coefficients of the polynomials P(m, n) = Sum_{k=1..n} binomial(m*n, m*k)* P(m, n-k)*z with P(m, 0) = 1 and m = 3. %F A278073 E.g.f.: 1/(1-t*((1/3)*exp(x)+(2/3)*exp(-(1/2)*x)*cos((1/2)*x*sqrt(3))-1)), nonzero terms. %e A278073 Triangle begins: %e A278073 [1] %e A278073 [0, 1] %e A278073 [0, 1, 20] %e A278073 [0, 1, 168, 1680] %e A278073 [0, 1, 1364, 55440, 369600] %e A278073 [0, 1, 10920, 1561560, 33633600, 168168000] %p A278073 P := proc(m, n) option remember; if n = 0 then 1 else %p A278073 add(binomial(m*n, m*k)*P(m, n-k)*x, k=1..n) fi end: %p A278073 for n from 0 to 6 do PolynomialTools:-CoefficientList(P(3,n), x) od; %p A278073 # Alternatively: %p A278073 A278073_row := proc(n) %p A278073 1/(1-t*((1/3)*exp(x)+(2/3)*exp(-(1/2)*x)*cos((1/2)*x*sqrt(3))-1)); %p A278073 expand(series(%,x,3*n+1)); (3*n)!*coeff(%,x,3*n); %p A278073 PolynomialTools:-CoefficientList(%,t) end: %p A278073 for n from 0 to 6 do A278073_row(n) od; %t A278073 With[{m = 3}, Table[Expand[j!*SeriesCoefficient[1/(1 - t*(MittagLefflerE[m, x^m] - 1)), {x, 0, j}]], {j, 0, 21, m}]]; %t A278073 Function[arg, CoefficientList[arg, t]] /@ % // Flatten %o A278073 (Sage) %o A278073 R = PowerSeriesRing(ZZ, 'x') %o A278073 x = R.gen().O(30) %o A278073 @cached_function %o A278073 def P(m, n): %o A278073 if n == 0: return R(1) %o A278073 return expand(sum(binomial(m*n, m*k)*P(m, n-k)*x for k in (1..n))) %o A278073 def A278073_row(n): return list(P(3, n)) %o A278073 for n in (0..6): print(A278073_row(n)) # _Peter Luschny_, Mar 24 2020 %Y A278073 Cf. A014606 (diagonal), A243664 (row sums), A002115 (alternating row sums), A281479 (central coefficients), A327023 (refinement). %Y A278073 Cf. A097805 (m=0), A131689 (m=1), A241171 (m=2), A278074 (m=4). %K A278073 nonn,tabl %O A278073 0,6 %A A278073 _Peter Luschny_, Jan 22 2017