This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278076 #20 Sep 06 2024 19:39:59 %S A278076 0,1,8,9,24,25,32,33,48,49,56,57,86,87,94,95,110,111,118,119,134,135, %T A278076 142,143,1260,1261,1268,1269,1284,1285,1292,1293,1308,1309,1316,1317, %U A278076 1346,1347,1354,1355,1370,1371,1378,1379,1394,1395,1402,1403,1890,1891,1898 %N A278076 Sums of finite subsequences of A280708. %H A278076 Robert Israel, <a href="/A278076/b278076.txt">Table of n, a(n) for n = 1..768</a> %p A278076 S:= {0}: # adapted from A280708 %p A278076 x:= 1: %p A278076 while x < 10^4 do %p A278076 if ormap(s -> isprime(s+x), S) %p A278076 then x:= x+1 %p A278076 else S:= S union map(`+`, S, x) %p A278076 fi %p A278076 od: %p A278076 sort(convert(S,list)); %t A278076 S = {0}; x = 1; %t A278076 While[x < 2000, If[AnyTrue[S, PrimeQ[#+x]&], x++, S = S ~Union~ (S+x)]]; %t A278076 S (* _Jean-François Alcover_, Apr 29 2019 *) %o A278076 (SageMath) %o A278076 def A278076(bound): %o A278076 x, y, S = 1, 1, {0} %o A278076 while x < bound: %o A278076 if any(is_prime(s+x) for s in S): %o A278076 x += 1 %o A278076 else: %o A278076 y = x %o A278076 S = S.union(s+x for s in S) %o A278076 return [s for s in sorted(S) if s <= y] %o A278076 print(A278076(10^5)) %Y A278076 Cf. A280708. %K A278076 nonn %O A278076 1,3 %A A278076 _Robert Israel_ and _Peter Luschny_, Jan 20 2017