This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278078 #11 Jul 21 2019 12:24:51 %S A278078 0,0,0,0,1,1,2,2,2,3,3,4,4,4,4,5,5,5,6,6,6,6,7,7,7,8,8,8,8,8,9,9,9,9, %T A278078 10,10,10,10,10,11,11,11,11,11,12,12,12,12,13,13,13,13,13,13,14,14,14, %U A278078 14,14,14,14,15,15,15,15,15,16,16,16,16,16,16,17,17 %N A278078 a(n) is the number of composite numbers prime(n) dominates. %C A278078 A prime number p dominates a composite numbers c if p is the dominant prime factor of c. A prime factor p of c is dominant if floor(sqrt(p)) > (c/p). %e A278078 53 dominates 106, 159, 212, 265, 318; therefore a(16) = 5. %t A278078 a[n_] := Module[{p = Prime[n], c, k}, For[k = 0; c = 2 p, c <= p Sqrt[p], c += p, If[Floor[Sqrt[p]] > c/p, k++]]; k]; Array[a, 74] (* _Jean-François Alcover_, Jul 21 2019 *) %Y A278078 Cf. A277624. %K A278078 nonn %O A278078 1,7 %A A278078 _Peter Luschny_, Dec 28 2016