This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278116 #14 Sep 08 2022 08:46:17 %S A278116 1,2,3,3,4,3,2,2,5,4,4,2,2,3,3,5,3,2,2,4,3,3,2,2,3,4,6,6,2,3,4,3,3,2, %T A278116 2,3,5,4,4,2,4,3,4,3,2,2,3,4,3,2,2,4,3,4,3,2,2,3,4,3,2,2,3,3,5,3,2,2, %U A278116 4,5,4,2,2,3,3,4,3,2,3,4,7,5,2,2,3,4,2,2,2,3,5,5,5,2,2,3,4,3,2,2,4,5,3,3,2 %N A278116 a(n) is the largest j such that A278115(n,k) strictly decreases for k=1..j. %H A278116 Jason Kimberley, <a href="/A278116/b278116.txt">Table of n, a(n) for n = 1..100000</a> %t A278116 Map[1 + Length@ TakeWhile[Differences@ #, # < 0 &] &, #] &@ Table[# Floor[n Sqrt[2/#]]^2 &@ Prime@ k, {n, 105}, {k, PrimePi[2 n^2]}] (* _Michael De Vlieger_, Feb 17 2017 *) %o A278116 (Magma) %o A278116 A:=func<n,k|Isqrt(2*n^2 div k)^2*k>; %o A278116 A278116:=func<n|(exists(j){j:j in[1..#P-1]|A(n,P[j])le A278115(n,P[j+1])} %o A278116 select j else #P) where P is PrimesUpTo(2*n^2)>; %o A278116 [A278116(n):n in[1..103]]; %o A278116 (Python) %o A278116 def isqrt(n): %o A278116 if n < 0: %o A278116 raise ValueError('imaginary') %o A278116 if n == 0: %o A278116 return 0 %o A278116 a, b = divmod(n.bit_length(),2) %o A278116 x = 2**(a+b) %o A278116 while True: %o A278116 y = (x + n//x)//2 %o A278116 if y >= x: %o A278116 return x %o A278116 x = y; %o A278116 def next_prime(n): %o A278116 for p in range(n+1,2*n+1): %o A278116 for i in range(2,isqrt(n)+1): %o A278116 if p % i == 0: %o A278116 break %o A278116 else: %o A278116 return p %o A278116 return None %o A278116 def A278116(n): %o A278116 k = 0 %o A278116 p = 2 %o A278116 s2= (n**2)*p %o A278116 s = s2 %o A278116 while True: %o A278116 s_= s %o A278116 k+= 1 %o A278116 p = next_prime(p) %o A278116 s = (isqrt(s2//p)**2)*p %o A278116 if s > s_: %o A278116 break %o A278116 return k %Y A278116 Cf. A278102. %Y A278116 This is the row length sequence for triangles A278117 and A278118. %Y A278116 A278119 lists first occurrences in this sequence. %K A278116 nonn,easy %O A278116 1,2 %A A278116 _Jason Kimberley_, Feb 12 2017