This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278120 #32 Nov 24 2016 09:31:16 %S A278120 -1,1,5,25,1033,15745,1599895,12116675,1519810267,5730215335, %T A278120 2762191322225,155865304045375,275016025098532093,129172331662700995, %U A278120 358829725148742321475,524011363178245785875,10072731258491333905209253,1181576300858987307102335,68622390512340213600239902775 %N A278120 a(n) is numerator of rational z(n) associated with the non-orientable map asymptotics constant p((n+1)/2). %H A278120 Gheorghe Coserea, <a href="/A278120/b278120.txt">Table of n, a(n) for n = 0..201</a> %H A278120 S. R. Carrell, <a href="https://arxiv.org/abs/1406.1760v2">The Non-Orientable Map Asymptotics Constant pg</a>, arXiv:1406.1760 [math.CO], 2014. %H A278120 Stavros Garoufalidis, Marcos Marino, <a href="https://arxiv.org/abs/0812.1195v4">Universality and asymptotics of graph counting problems in nonorientable surfaces</a>, arXiv:0812.1195 [math.CO], 2008. %F A278120 a(n) = numerator(z(n)), where z(n) = 1/2 * (y(n/2)/3^(n/2) + (5*n-6)/6 * z(n-1) + Sum {k=1..n-1} z(k)*z(n-k)), with z(0) = -1, y(n) = A269418(n)/A269419(n) and y(n+1/2) = 0 for all n. %F A278120 p((n+1)/2) = 4 * (A278120(n)/A278121(n)) * (3/2)^((n+1)/2) / gamma((5*n-1)/4), where p((n+1)/2) is the non-orientable map asymptotics constant for type g=(n+1)/2 and gamma is the Gamma function. %e A278120 For n=2 we have p(3/2) = 4 * (5/144) * (3/2)^(3/2) / gamma(9/4) = 2/(sqrt(6)*gamma(1/4)). %e A278120 For n=4 we have p(5/2) = 4 * (1033/27648) * (3/2)^(5/2) / gamma(19/4) = 1033/(13860*sqrt(6)*gamma(3/4)). %e A278120 n z(n) p((n+1)/2) %e A278120 0 -1 3/(sqrt(6)*gamma(3/4)) %e A278120 1 1/12 1/2 %e A278120 2 5/144 2/(sqrt(6)*gamma(1/4)) %e A278120 3 25/864 5/(36*sqrt(Pi)) %e A278120 4 1033/27684 1033/(13860*sqrt(6)*gamma(3/4)) %e A278120 5 15745/248832 3149/442368 %e A278120 6 1599895/11943936 319979/(18796050*sqrt(6)*gamma(1/4)) %e A278120 7 12116675/35831808 484667/(560431872*sqrt(Pi)) %e A278120 8 1519810267/1528823808 1519810267/(4258429005600*sqrt(6)*gamma(3/4)) %e A278120 9 5730215335/1719926784 1146043067/41094783959040 %e A278120 ... %o A278120 (PARI) %o A278120 A269418_seq(N) = { %o A278120 my(y = vector(N)); y[1] = 1/48; %o A278120 for (n = 2, N, %o A278120 y[n] = (25*(n-1)^2-1)/48 * y[n-1] + 1/2*sum(k = 1, n-1, y[k]*y[n-k])); %o A278120 concat(-1, y); %o A278120 }; %o A278120 seq(N) = { %o A278120 my(y = A269418_seq(N), z = vector(N)); z[1] = 1/12; %o A278120 for (n = 2, N, %o A278120 my(t1 = if(n%2, 0, y[1+n\2]/3^(n\2)), %o A278120 t2 = sum(k=1, n-1, z[k]*z[n-k])); %o A278120 z[n] = (t1 + (5*n-6)/6 * z[n-1] + t2)/2); %o A278120 concat(-1, z); %o A278120 }; %o A278120 apply(numerator, seq(18)) %Y A278120 Cf. A269418, A269419, A278121 (denominator). %K A278120 sign,frac %O A278120 0,3 %A A278120 _Gheorghe Coserea_, Nov 12 2016