cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278127 a(n) = 99*n + 71.

This page as a plain text file.
%I A278127 #10 Mar 29 2019 05:02:54
%S A278127 71,170,269,368,467,566,665,764,863,962,1061,1160,1259,1358,1457,1556,
%T A278127 1655,1754,1853,1952,2051,2150,2249,2348,2447,2546,2645,2744,2843,
%U A278127 2942,3041,3140,3239,3338,3437,3536,3635,3734,3833,3932,4031,4130,4229,4328,4427,4526
%N A278127 a(n) = 99*n + 71.
%C A278127 a(n) (n>=1) is the second Zagreb index of  the  triple-layered naphthalenophane G(n,n,n) having n hexagons in each layer. The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph. The pictorial definition of G(p,q,r) can be viewed in the E. Flapan references.
%C A278127 The M-polynomial of the triple layered naphthalenophane G(p,q,r) is M(G(p,q,r),x,y) = 8*x^2*y^2 + 4*(p + q + r + 2)*x^2*y^3 + (p + q + r - 1)*x^3*y^3 (p, q, r>=1).
%D A278127 Erica Flapan, When Topology Meets Chemistry, Cambridge Univ. Press, Cambridge, 2000.
%H A278127 E. Deutsch and Sandi Klavzar, <a href="http://dx.doi.org/10.22052/ijmc.2015.10106">M-polynomial and degree-based topological indices</a>, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
%H A278127 Erica Flapan and Brian Forcum, <a href="https://www.researchgate.net/publication/257591558_Intrinsic_Chirality_of_Multipartite_Graphs">Intrinsic chirality of triple-layered naphthalenophane and related graphs</a>, J. Math. Chemistry, 24, 1998, 379-388.
%H A278127 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F A278127 G.f.: (71 + 28*x)/(1 - x)^2.
%p A278127 seq(99*n+71, n = 0..45);
%Y A278127 Cf. A278126.
%K A278127 nonn,easy
%O A278127 0,1
%A A278127 _Emeric Deutsch_, Nov 13 2016