cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278142 Denominators of partial sums of a Ramanujan series converging to 2^(3/2)/(sqrt(Pi)*Gamma(3/4)^2) given in A278146.

This page as a plain text file.
%I A278142 #17 Jan 11 2017 03:42:10
%S A278142 1,256,1048576,268435456,17592186044416,4503599627370496,
%T A278142 18446744073709551616,4722366482869645213696,
%U A278142 4951760157141521099596496896,1267650600228229401496703205376,5192296858534827628530496329220096,1329227995784915872903807060280344576,87112285931760246646623899502532662132736
%N A278142 Denominators of partial sums of a Ramanujan series converging to 2^(3/2)/(sqrt(Pi)*Gamma(3/4)^2) given in A278146.
%C A278142 The numerators are given in A278141, where also details and a reference are given.
%H A278142 G. C. Greubel, <a href="/A278142/b278142.txt">Table of n, a(n) for n = 0..100</a>
%F A278142 a(n) = denominator(r(n)), with the rationals r(n) = Sum_{k=0..n} (1+8*k)*(risefac(-1/4,k)/k!)^4. The rising factorial is risefac(x,k) = Product_{j=0..k-1} (x+j), and risefac(x,0) = 1.
%F A278142 a(n) = denominator( Sum_{k=0..n} (1+8*k)*(binomial(-1/4,k))^4 ).
%e A278142 See A278141.
%t A278142 Denominator[Table[Sum[(1 + 8*k)*(Binomial[-1/4, k])^4, {k, 0, n}], {n, 0, 10}]] (* _G. C. Greubel_, Jan 10 2017 *)
%o A278142 (PARI) for (n = 0, 10, print1 (denominator(sum (k = 0, n, (1+8*k)*(binomial (-1/4, k))^4)), ", ")) \\ _G. C. Greubel_, Jan 10 2017
%Y A278142 Cf. A278141, A278146.
%K A278142 nonn,frac,easy
%O A278142 0,2
%A A278142 _Wolfdieter Lang_, Nov 14 2016