A278148 Triangle T(n, m) giving in row n the numerators of the fractions for the Farey dissection of order n.
1, 1, 2, 1, 2, 3, 3, 1, 2, 2, 3, 5, 4, 1, 2, 2, 3, 3, 4, 5, 5, 7, 5, 1, 2, 2, 2, 3, 3, 4, 5, 5, 7, 9, 6, 1, 2, 2, 2, 3, 3, 3, 5, 4, 5, 7, 5, 7, 8, 7, 9, 11, 7, 1, 2, 2, 2, 2, 3, 3, 4, 5, 5, 4, 5, 7, 8, 7, 7, 8, 7, 9, 11, 13, 8, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5, 7, 5, 6, 9, 7, 8, 7, 7, 8, 10, 11, 9, 11, 13, 15, 9
Offset: 1
Examples
The triangle T(n, m) begins: n\m 1 2 3 4 5 6 7 8 9 10 11 12 ... 1: 1 2: 1 2 3: 1 2 3 3 4: 1 2 2 3 5 4 5: 1 2 2 3 3 4 5 5 7 5 6: 1 2 2 2 3 3 4 5 5 7 9 6 ... n = 7: 1 2 2 2 3 3 3 5 4 5 7 5 7 8 7 9 11 7, n = 8: 1 2 2 2 2 3 3 4 5 5 4 5 7 8 7 7 8 7 9 11 13 8, n = 9: 1 2 2 2 2 3 3 3 3 4 5 5 7 5 6 9 7 8 7 7 8 10 11 9 11 13 15 9, n = 10: 1 2 2 2 2 2 3 3 3 5 4 4 5 5 7 5 6 9 7 8 7 9 12 8 10 11 9 11 13 15 17 10. ............................................. The fractions T(n,m)/A278149(n, m) begin: n\m 1 2 3 4 5 6 7 8 9 10 1: 1/2 2: 1/3 2/3 3: 1/4 2/5 3/5 3/4 4: 1/5 2/7 2/5 3/5 5/7 4/5 5: 1/6 2/9 2/7 3/8 3/7 4/7 5/8 5/7 7/9 5/6 ... n = 6: 1/7 2/11 2/9 2/7 3/8 3/7 4/7 5/8 5/7 7/9 9/11 6/7, n = 7: 1/8 2/13 2/11 2/9 3/11 3/10 3/8 5/12 4/9 5/9 7/12 5/8 7/10 8/11 7/9 9/11 11/13 7/8, n = 8: 1/9 2/15 2/13 2/11 2/9 3/11 3/10 4/11 5/13 5/12 4/9 5/9 7/12 8/13 7/11 7/10 8/11 7/9 9/11 11/13 13/15 8/9, n = 9: 1/10 2/17 2/15 2/13 2/11 3/14 3/13 3/11 3/10 4/11 5/13 5/12 7/16 5/11 6/11 9/16 7/12 8/13 7/11 7/10 8/11 10/13 11/14 9/11 11/13 13/15 15/17 9/10, n = 10: 1/11 2/19 2/17 2/15 2/13 2/11 3/14 3/13 3/11 5/17 4/13 4/11 5/13 5/12 7/16 5/11 6/11 9/16 7/12 8/13 7/11 9/13 12/17 8/11 10/13 11/14 9/11 11/13 13/15 15/17 17/19 10/11. ............................................. For n = 5 the actual intervals J(5,j), j= 1..9 are then: [1/6, 2/9], [2/9, 2/7], [2/7, 3/8], [3/8, 3/7], [3/7, 4/7], [4/7, 5/8], [5/8, 5/7], [5/7, 7/9], [7/9, 5/6].
References
- G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, p. 121.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 5th ed., Clarendon Press, Oxford, 2003, pp. 23, 29 - 31.
Comments