This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278179 #19 Nov 24 2016 09:33:05 %S A278179 240,144,48,8,96,1,32,1,32,1,8,1,16,1,64,1,32,1,32,1,64,1,16,1,16,1,8, %T A278179 1,16,1,128,1,32,1,32,1,64,1,64,1,64,1,4,1,8,1,32,1,16,1,16,1,32,1,16, %U A278179 1,16,1,8,1,16,1,256,1,32,1,32,1,64,1,64,1,64,1,16,1,32,1,128,1,64,1,64,1,128 %N A278179 a(n) is the denominator of intersection number <tau_2^(3n-3)>, n>=2. %C A278179 For 'intersection numbers' see Section 1 in Itzykson and Zuber paper. %H A278179 Gheorghe Coserea, <a href="/A278179/b278179.txt">Table of n, a(n) for n = 2..1025</a> %H A278179 Stavros Garoufalidis, Marcos Marino, <a href="https://arxiv.org/abs/0812.1195v4">Universality and asymptotics of graph counting problems in nonorientable surfaces</a>, arXiv:0812.1195 [math.CO], 2008. %H A278179 C. Itzykson, J.-B. Zuber, <a href="https://arxiv.org/abs/hep-th/9201001">Combinatorics of the Modular Group II: the Kontsevich integrals</a>, arXiv:hep-th/9201001, 1991. %F A278179 a(n) = denominator((3*n-3)!*4^n/((5*n-5)*(5*n-3)) * A269418(n)/A269419(n)) for n >= 2. %e A278179 7/240, 1225/144, 1816871/48, 7723802625/8, 8591613499103635/96, ... %o A278179 (PARI) %o A278179 A269418_seq(N) = { %o A278179 my(y = vector(N)); y[1] = 1/48; %o A278179 for (n = 2, N, %o A278179 y[n] = (25*(n-1)^2-1)/48 * y[n-1] + 1/2*sum(k = 1, n-1, y[k]*y[n-k])); %o A278179 concat(-1, y); %o A278179 }; %o A278179 seq(N) = { %o A278179 my(y = A269418_seq(N+2)); %o A278179 vector(N, g, (3*g)! * 4^(g+1) / ((5*g)*(5*g+2)) * y[g+2]); %o A278179 }; %o A278179 apply(denominator, seq(85)) %Y A278179 Cf. A269418, A269419, A278178 (numerator). %K A278179 nonn,frac %O A278179 2,1 %A A278179 _Gheorghe Coserea_, Nov 13 2016