This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278181 #32 Nov 24 2016 09:42:04 %S A278181 1,1,2,3,4,5,7,8,9,12,14,19,22,29,33,42,47,59,74,82,99,108,129,155, %T A278181 169,202,243,265,316,378,411,486,575,622,728,861,1017,1099,1280,1487, %U A278181 1595,1832,2116,2440,2609,2980,3425,3933,4198,4779,5473,6262,6673,7570,8631,9828,10450,11800,13389,15267,17383 %N A278181 Hexagonal spiral constructed on the nodes of the triangular net in which each new term is the sum of its neighbors. %C A278181 To evaluate a(n) consider the neighbors of a(n) that are present in the spiral when a(n) should be a new term in the spiral. %H A278181 JungHwan Min, <a href="/A278181/b278181.txt">Table of n, a(n) for n = 0..10000</a> %e A278181 Illustration of initial terms as a spiral: %e A278181 . %e A278181 . 22 - 19 - 14 %e A278181 . / \ %e A278181 . 29 3 - 2 12 %e A278181 . / / \ \ %e A278181 . 33 4 1 - 1 9 %e A278181 . \ \ / %e A278181 . 42 5 - 7 - 8 %e A278181 . \ %e A278181 . 47 - 59 - 74 %e A278181 . %e A278181 a(16) = 47 because the sum of its two neighbors is 42 + 5 = 47. %e A278181 a(17) = 59 because the sum of its three neighbors is 47 + 5 + 7 = 59. %e A278181 a(18) = 74 because the sum of its three neighbors is 59 + 7 + 8 = 74. %e A278181 a(19) = 82 because the sum of its two neighbors is 74 + 8 = 82. %t A278181 A278181[0] = A278181[1] = 1; A278181[n_] := A278181[n] = With[{lev = Ceiling[1/6 (-3 + Sqrt[3] Sqrt[3 + 4 n])]}, With[{pos = 3 lev (lev - 1) + (n - 3 lev (1 + lev))/lev*(lev - 1)}, A278181[n - 1] + A278181[Ceiling[pos]] + If[Mod[n, lev] == 0 || n - 3 lev (lev - 1) == 1, 0, A278181[Floor[pos]]] + If[3 lev (1 + lev) == n, A278181[n - 6 lev + 1], 0]]]; Array[A278181, 61, 0] (* _JungHwan Min_, Nov 21 2016 *) %Y A278181 Cf. A047931, A064642, A122479, A141481, A274821, A274921, A275606, A275610. %K A278181 nonn %O A278181 0,3 %A A278181 _Omar E. Pol_, Nov 14 2016