A278204 Number of nX4 0..1 arrays with every element both equal and not equal to some elements at offset (-1,-1) (-1,0) (-1,1) (0,-1) (0,1) (1,-1) (1,0) or (1,1), with upper left element zero.
0, 46, 666, 8242, 117088, 1674402, 23732454, 336380248, 4770344900, 67648850802, 959306211222, 13603641359640, 192909619956550, 2735599405114814, 38792794983910750, 550110139019848618, 7800963216380203384
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..1..1. .0..0..0..0. .0..0..0..0. .0..1..1..1. .0..1..0..0 ..0..1..0..0. .1..0..0..1. .1..0..1..1. .0..1..1..0. .0..0..1..1 ..1..1..1..0. .1..0..1..0. .1..1..1..0. .0..1..0..1. .1..0..1..0 ..0..0..0..0. .0..1..1..1. .1..0..0..0. .0..1..0..1. .1..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A278208.
Formula
Empirical: a(n) = 10*a(n-1) +46*a(n-2) +157*a(n-3) +471*a(n-4) -202*a(n-5) -2198*a(n-6) -1400*a(n-7) -941*a(n-8) -1959*a(n-9) +2763*a(n-10) +374*a(n-11) -387*a(n-12) +3427*a(n-13) -1743*a(n-14) -335*a(n-15) +862*a(n-16) -1124*a(n-17) +584*a(n-18) -96*a(n-19)
Comments