cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278205 Number of nX5 0..1 arrays with every element both equal and not equal to some elements at offset (-1,-1) (-1,0) (-1,1) (0,-1) (0,1) (1,-1) (1,0) or (1,1), with upper left element zero.

This page as a plain text file.
%I A278205 #4 Nov 15 2016 12:24:18
%S A278205 0,161,4827,117088,3295771,93838003,2644587148,74502577363,
%T A278205 2100207846025,59204820850114,1668914682945041,47044781998461473,
%U A278205 1326141579240041036,37382494487271576091,1053771855874680878859,29704682675479642221344
%N A278205 Number of nX5 0..1 arrays with every element both equal and not equal to some elements at offset (-1,-1) (-1,0) (-1,1) (0,-1) (0,1) (1,-1) (1,0) or (1,1), with upper left element zero.
%C A278205 Column 5 of A278208.
%H A278205 R. H. Hardin, <a href="/A278205/b278205.txt">Table of n, a(n) for n = 1..210</a>
%F A278205 Empirical: a(n) = 19*a(n-1) +189*a(n-2) +1584*a(n-3) +10608*a(n-4) +14412*a(n-5) -85090*a(n-6) -391138*a(n-7) -1606034*a(n-8) -2817596*a(n-9) +5687406*a(n-10) +8027881*a(n-11) +19438705*a(n-12) +68401755*a(n-13) -31364868*a(n-14) -61559855*a(n-15) -91683401*a(n-16) -479455372*a(n-17) +12586341*a(n-18) -58748050*a(n-19) -86449447*a(n-20) +1397633647*a(n-21) -203563888*a(n-22) +375197049*a(n-23) +833933492*a(n-24) -1926809978*a(n-25) +421547099*a(n-26) -230101783*a(n-27) -639000471*a(n-28) +809196262*a(n-29) +51478617*a(n-30) -9474388*a(n-31) -240861719*a(n-32) +36942959*a(n-33) +34157730*a(n-34) -3062038*a(n-35) +203994920*a(n-36) -123672724*a(n-37) -22260448*a(n-38) +9217234*a(n-39) -17678304*a(n-40) +15339168*a(n-41) +1345364*a(n-42) -884528*a(n-43) -95208*a(n-44) -422416*a(n-45) +21888*a(n-46) +7488*a(n-47) +17280*a(n-48) for n>49
%e A278205 Some solutions for n=4
%e A278205 ..0..1..0..0..1. .0..0..0..1..1. .0..1..0..1..0. .0..0..0..1..1
%e A278205 ..0..0..1..1..0. .0..1..1..0..1. .0..0..1..0..1. .1..1..1..0..1
%e A278205 ..0..0..1..1..0. .1..0..0..0..1. .1..0..0..0..0. .0..0..0..1..0
%e A278205 ..0..1..0..1..1. .0..1..0..0..1. .1..1..1..1..1. .0..1..1..0..0
%Y A278205 Cf. A278208.
%K A278205 nonn
%O A278205 1,2
%A A278205 _R. H. Hardin_, Nov 15 2016