This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278218 #23 Nov 22 2016 21:48:06 %S A278218 1,1,1,1,2,1,1,2,2,1,1,4,6,4,1,1,2,6,6,2,1,1,6,6,12,6,6,1,1,2,6,6,6,6, %T A278218 2,1,1,8,12,24,30,24,12,8,1,1,4,36,60,60,60,60,36,4,1,1,6,12,120,210, %U A278218 180,210,120,12,6,1,1,2,6,30,210,210,210,210,30,6,2,1,1,12,30,60,60,360,420,360,60,60,30,12,1 %N A278218 Triangle read by rows: T(n,k) = Least number with the prime signature of binomial(n,k). %H A278218 Antti Karttunen, <a href="/A278218/b278218.txt">Table of n, a(n) for n = 0..7259; first 120 antidiagonals</a> %H A278218 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %F A278218 T(n,k) = A046523(C(n,k)). %F A278218 a(n) = A046523(A007318(n)). [When viewed as a one-dimensional sequence.] %e A278218 The triangle begins as: %e A278218 1 %e A278218 1, 1 %e A278218 1, 2, 1 %e A278218 1, 2, 2, 1 %e A278218 1, 4, 6, 4, 1 %e A278218 1, 2, 6, 6, 2, 1 %e A278218 1, 6, 6, 12, 6, 6, 1 %e A278218 1, 2, 6, 6, 6, 6, 2, 1 %e A278218 1, 8, 12, 24, 30, 24, 12, 8, 1 %e A278218 1, 4, 36, 60, 60, 60, 60, 36, 4, 1 %e A278218 1, 6, 12, 120, 210, 180, 210, 120, 12, 6, 1 %e A278218 1, 2, 6, 30, 210, 210, 210, 210, 30, 6, 2, 1 %e A278218 1, 12, 30, 60, 60, 360, 420, 360, 60, 60, 30, 12, 1 %e A278218 1, 2, 30, 30, 30, 60, 420, 420, 60, 30, 30, 30, 2, 1 %e A278218 1, 6, 6, 60, 30, 210, 210, 840, 210, 210, 30, 60, 6, 6, 1 %e A278218 etc. %t A278218 Table[Times @@ MapIndexed[(Prime@ First@ #2)^#1 &, #] &@ If[Length@ # == 1 && #[[1, 1]] == 1, {0}, Reverse@ Sort@ #[[All, -1]]] &@ FactorInteger[ Binomial[n, k]], {n, 0, 12}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Nov 21 2016 *) %o A278218 (Scheme) (define (A278218 n) (A046523 (A007318 n))) %Y A278218 Cf. A007318, A046523. %Y A278218 Diagonals: A000012, A046523, A278253, A278252. %K A278218 nonn,tabl %O A278218 0,5 %A A278218 _Antti Karttunen_, Nov 19 2016