cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278289 Number of standard Young tableaux of skew shape (2n-1,2n-2,...,2,1)/(n-1,n-2,..,2,1).

Original entry on oeis.org

1, 1, 16, 101376, 1190156828672, 68978321274090930831360, 40824193474825703180733027309531955200, 440873872874088459550341319780612789503586208384381091840, 140992383930585613207663170866505518985873138480180692888967131590224605582721024
Offset: 0

Views

Author

Alejandro H. Morales, Nov 16 2016

Keywords

Examples

			For n = 3 there are a(2) = 16 standard tableaux of shape (3,2,1)/(1).
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Corollary 7.16.3.

Crossrefs

Cf. A005118; for even n the number of terms in Naruse hook length formula is given by A181119 (Corollary 8.1 in arXiv:1610.04744).

Programs

  • Maple
    a:=proc(k) local lam,mu;
    lam:=[seq(2*k-i,i=1..2*k-1)];
    mu:=[seq(k-i,i=1..k-1),seq(0,i=1..k)];
    factorial(binomial(2*k,2)-binomial(k,2))*LinearAlgebra:-Determinant(Matrix(2*k-1, 2*k-1,(i,j)->`if`(lam[i]-mu[j]-i+j<0,0,1/factorial(lam[i]-mu[j]-i+j))));
    end proc:
    seq(a(n),n=0..5);

Formula

a(n) = ((3*n^2-n)/2)!*det(1/(lambda[i]-mu[j]-i+j)!), where lambda = (2*n-1,2*n-2,...,1) and mu = (n-1,n-2,...,1,0...,0).
There is a constant c such that log(a(k)) = n*log(n)/2 + c*n + o(n) where n = k*(3*k-1)/2 goes to infinity and -0.2368 <= c <= -0.1648. [updated by Alejandro H. Morales, Aug 29 2020]