This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278290 #43 Apr 01 2017 20:21:35 %S A278290 0,1,2,1,4,2,1,4,4,2,1,4,4,4,2,1,4,4,4,4,2,1,4,4,4,4,4,2,1,4,4,4,4,4, %T A278290 4,2,1,4,4,4,4,4,4,4,2,1,4,4,4,4,4,4,4,4,2,1,4,4,4,4,4,4,4,4,4,2,1,4, %U A278290 4,4,4,4,4,4,4,4,4,2,1,4,4,4,4,4,4,4,4,4,4,4,2,1,4,4,4,4,4,4,4,4,4,4,4,4,2,1,4,4,4,4,4,4,4,4,4,4,4,4,4,2 %N A278290 Number of neighbors of each new term in a square array read by antidiagonals. %C A278290 Here the "neighbors" of T(n,k) are defined to be the adjacent elements to T(n,k), in the same row, column or diagonals, that are present in the square array when T(n,k) is the new element of the sequence in progress. %C A278290 Apart from row 1 and column 1 the rest of the elements are 4's. %C A278290 If every "4" is replaced with a "3" we have the sequence A275015. %C A278290 For the same idea but for a right triangle see A278317; for an isosceles triangle see A275015; for a square spiral see A278354; and for a hexagonal spiral see A047931. %e A278290 The corner of the square array read by antidiagonals upwards begins: %e A278290 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,... %e A278290 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,... %e A278290 1, 4, 4, 4, 4, 4, 4, 4, 4, 4,... %e A278290 1, 4, 4, 4, 4, 4, 4, 4, 4,... %e A278290 1, 4, 4, 4, 4, 4, 4, 4,... %e A278290 1, 4, 4, 4, 4, 4, 4,... %e A278290 1, 4, 4, 4, 4, 4,... %e A278290 1, 4, 4, 4, 4,... %e A278290 1, 4, 4, 4,... %e A278290 1, 4, 4,... %e A278290 1, 4,... %e A278290 1,... %e A278290 .. %t A278290 Table[Boole[# > 1] + 2 Boole[k > 1] + Boole[And[# > 1, k > 1]] &[n - k + 1], {n, 14}, {k, n}] // Flatten (* or *) %t A278290 Table[Boole[n > 1] (Map[Mod[#, n] &, Range@ n] /. {k_ /; k > 1 -> 4, 0 -> 2}), {n, 14}] // Flatten (* _Michael De Vlieger_, Nov 23 2016 *) %Y A278290 Antidiagonal sums give 0 together with A004767. %Y A278290 Row 1 gives 0 together with A007395, also twice A057427. %Y A278290 Column 1 gives A057427. %Y A278290 Cf. A047931, A274912, A274913, A275015, A278317, A278354. %K A278290 nonn,tabl %O A278290 1,3 %A A278290 _Omar E. Pol_, Nov 16 2016