This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278291 #34 Nov 30 2016 13:05:54 %S A278291 3,10,15,22,26,28,34,35,39,45,58,76,86,87,94,95,99,117,119,122,123, %T A278291 125,134,136,142,143,146,148,154,159,165,171,172,175,178,202,203,206, %U A278291 214,215,218,219,231,245,246,254,285,286,297,299,302,303,327,333,335,351,357,362,370,376,382,388,394,395 %N A278291 Numbers n such that n-1 has the same number of prime factors as n (with multiplicity). %H A278291 Ely Golden, <a href="/A278291/b278291.txt">Table of n, a(n) for n = 1..10000</a> %F A278291 a(n) = A045920(n) + 1. - _Robert G. Wilson v_, Nov 17 2016 %e A278291 a(1)=3, as both 2 and 3 have 1 prime factor. a(2)=10, as both 9 and 10 have 2 prime factors. a(3)=15, as both 14 and 15 have 2 prime factors. %t A278291 fQ[n_] := PrimeOmega[n - 1] == PrimeOmega[n]; Select[Range@400, fQ] (* _Robert G. Wilson v_, Nov 17 2016 *) %o A278291 (Java) public class A278291{ %o A278291 public static void main(String[] args)throws Exception{ %o A278291 long dim0=numberOfPrimeFactors(2);//note that this method must be manually implemented by the user %o A278291 long dim1; %o A278291 long counter=3; %o A278291 long index=1; %o A278291 while(index<=10000){ %o A278291 dim1=numberOfPrimeFactors(counter); %o A278291 if(dim1==dim0){System.out.println(index+" "+counter);index++;} %o A278291 dim0=dim1; %o A278291 counter++; %o A278291 } %o A278291 } %o A278291 } %o A278291 (SageMath) %o A278291 def bigomega(x): %o A278291 s=0; %o A278291 f=list(factor(x)); %o A278291 for c in range(len(f)): %o A278291 s+=f[c][1] %o A278291 return s; %o A278291 dim0=bigomega(2); %o A278291 counter=3 %o A278291 index=1 %o A278291 while(index<=10000): %o A278291 dim1=bigomega(counter); %o A278291 if(dim1==dim0): %o A278291 print(str(index)+" "+str(counter)) %o A278291 index+=1; %o A278291 dim0=dim1; %o A278291 counter+=1; %o A278291 (PARI) is(n) = bigomega(n)==bigomega(n-1) \\ _Felix Fröhlich_, Nov 17 2016 %K A278291 nonn %O A278291 1,1 %A A278291 _Ely Golden_, Nov 16 2016