This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278293 #27 Nov 30 2016 13:09:43 %S A278293 1,2,2,2,2,3,2,2,2,3,2,3,2,2,2,2,3,3,2,2,2,3,2,4,2,2,2,3,3,2,3,3,3,3, %T A278293 2,2,2,2,2,2,2,2,3,3,3,2,3,3,4,2,2,2,2,3,2,4,3,2,3,4,2,3,2,2,3,3,3,3, %U A278293 3,2,2,2,4,3,2,2,3,3,2 %N A278293 a(n) is the number of prime factors of A278291(n) (with multiplicity). %C A278293 a(n) is also the number of prime factors in A045920(n), by definition. %C A278293 Empirically, it seems as though there are relatively fewer instances of a(n)=x as x tends toward positive infinity (with the exception of a(n)=1, of which there is exactly one instance due to 2 and 3 being the only consecutive primes). For example, in the first 10000 terms, 2391 are 2, 5046 are 3, 2126 are 4, 381 are 5, 51 are 6, 3 are 7, and only one is 8, with no terms in the first 10000 greater than 8. %H A278293 Ely Golden, <a href="/A278293/b278293.txt">Table of n, a(n) for n = 1..10000</a> %F A278293 a(n) = A001222(A278291(n)) = A001222(A045920(n)) %e A278293 a(2)=2, as A278291(2)=10, which has 2 prime factors. %e A278293 a(6)=3, as A278291(6)=28, which has 3 prime factors. %o A278293 (Java) public class A278293{ %o A278293 public static void main(String[] args)throws Exception{ %o A278293 long dim0=numberOfPrimeFactors(2);//note that this method must be manually implemented by the user %o A278293 long dim1; %o A278293 long counter=3; %o A278293 long index=1; %o A278293 while(index<=10000){ %o A278293 dim1=numberOfPrimeFactors(counter); %o A278293 if(dim1==dim0){System.out.println(index+" "+dim1);index++;} %o A278293 dim0=dim1; %o A278293 counter++; %o A278293 } %o A278293 } %o A278293 } %o A278293 (SageMath) %o A278293 def bigomega(x): %o A278293 s=0; %o A278293 f=list(factor(x)); %o A278293 for c in range(len(f)): %o A278293 s+=f[c][1] %o A278293 return s; %o A278293 dim0=bigomega(2); %o A278293 counter=3 %o A278293 index=1 %o A278293 while(index<=10000): %o A278293 dim1=bigomega(counter); %o A278293 if(dim1==dim0): %o A278293 print(str(index)+" "+str(dim1)) %o A278293 index+=1; %o A278293 dim0=dim1; %o A278293 counter+=1; %Y A278293 Cf. A045920(n). %K A278293 nonn %O A278293 1,2 %A A278293 _Ely Golden_, Nov 16 2016