This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278294 #45 Dec 05 2016 11:48:28 %S A278294 3,10,28,136,945,5265,29889,50625,203392,3290625,6082048,32536000, %T A278294 326481921,3274208001,6929459200,72523096065,37694578689,471672487936, %U A278294 11557226700801,54386217385984,50624737509376,275892612890625,4870020829413376,68091093855502336,2280241934368768 %N A278294 a(n) = first term in A278291 with n prime factors. %C A278294 a(n)-1 is the first term in A115186 with n prime factors, by definition. %C A278294 If f(n) is the index of the first occurrence of n in A278293, a(n)=A278291(f(n)), by definition. %H A278294 Ely Golden, <a href="/A278294/b278294.txt">Table of n, a(n) for n = 1..25</a> %e A278294 a(2)=10, as it is the first term of A278291 with 2 prime factors. %e A278294 a(3)=28, as it is the first term of A278291 with 3 prime factors. %t A278294 Function[w, Flatten@ Map[w[[#]] &, #] &@ Map[First, DeleteCases[#, w_ /; Length@ w == 0]] &@ Map[Position[w, k_ /; PrimeOmega@k == #] &, Range@ 9]]@ Select[Range[10^6], Equal @@ Map[PrimeOmega, {# - 1, #}] &] (* _Michael De Vlieger_, Dec 01 2016 *) %o A278294 (Java) import java.math.BigInteger; %o A278294 public class A278294{ %o A278294 public static void main(String[] args)throws Exception{ %o A278294 BigInteger dim0=numberOfPrimeFactors(BigInteger.valueOf(2));//note that this method must be manually implemented by the user %o A278294 BigInteger dim1; %o A278294 BigInteger maxdim=BigInteger.ONE; %o A278294 BigInteger counter=BigInteger.valueOf(3); %o A278294 long index=1; %o A278294 while(index<=20){ %o A278294 dim1=numberOfPrimeFactors(counter); %o A278294 if(dim1.equals(dim0)&&maxdim.testBit(dim1.intValue())==false){System.out.println(dim1+" "+counter);maxdim=maxdim.setBit(dim1.intValue());index++;} %o A278294 dim0=dim1; %o A278294 counter=counter.add(BigInteger.ONE); %o A278294 } %o A278294 } %o A278294 } %o A278294 (SageMath) %o A278294 def bigomega(x): %o A278294 s=0; %o A278294 f=list(factor(x)); %o A278294 for c in range(len(f)): %o A278294 s+=f[c][1] %o A278294 return s; %o A278294 dim0=bigomega(2); %o A278294 maxdim=1 %o A278294 counter=3 %o A278294 index=1 %o A278294 while(index<=20): %o A278294 dim1=bigomega(counter); %o A278294 if((dim1==dim0)&((maxdim&(1<<dim1))==0)): %o A278294 print(str(index)+" "+str(counter)) %o A278294 maxdim=maxdim|(1<<dim1); %o A278294 index+=1; %o A278294 dim0=dim1; %o A278294 counter+=1; %Y A278294 Cf. A115186. %K A278294 nonn %O A278294 1,1 %A A278294 _Ely Golden_, Nov 16 2016