A278296 Expansion of ((sqrt(2)-1)*(-sqrt(2);x)_inf - (sqrt(2)+1)*(sqrt(2);x)_inf)/2, where (a;q)_inf is the q-Pochhammer symbol.
1, 0, 0, 2, 2, 4, 4, 6, 6, 8, 12, 14, 18, 24, 32, 38, 50, 60, 76, 90, 110, 136, 164, 194, 234, 280, 336, 402, 474, 564, 668, 790, 926, 1096, 1276, 1494, 1754, 2040, 2368, 2758, 3186, 3692, 4268, 4922, 5670, 6528, 7492, 8594, 9858, 11272, 12888, 14722, 16786
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.
Crossrefs
Cf. A238132.
Programs
-
Maple
qP := (x,y) -> (y-1)*QDifferenceEquations:-QPochhammer(-y,x,99): dP := x -> (qP(x,sqrt(2)) + qP(x,-sqrt(2)))/2: simplify(expand(dP(x),x)): seq(coeff(%,x,n), n=0..52); # Peter Luschny, Nov 17 2016
-
Mathematica
Simplify@(((Sqrt[2] - 1) QPochhammer[-Sqrt[2], x] - (Sqrt[2] + 1) QPochhammer[Sqrt[2], x])/2 + O[x]^53)[[3]]
Comments