cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278296 Expansion of ((sqrt(2)-1)*(-sqrt(2);x)_inf - (sqrt(2)+1)*(sqrt(2);x)_inf)/2, where (a;q)_inf is the q-Pochhammer symbol.

Original entry on oeis.org

1, 0, 0, 2, 2, 4, 4, 6, 6, 8, 12, 14, 18, 24, 32, 38, 50, 60, 76, 90, 110, 136, 164, 194, 234, 280, 336, 402, 474, 564, 668, 790, 926, 1096, 1276, 1494, 1754, 2040, 2368, 2758, 3186, 3692, 4268, 4922, 5670, 6528, 7492, 8594, 9858, 11272, 12888, 14722, 16786
Offset: 0

Views

Author

Vladimir Reshetnikov, Nov 16 2016

Keywords

Comments

The q-Pochhammer symbol (a;q)inf = Product{k>=0} (1 - a*q^k).
a(n) agrees with A238132(n) for 0 < n < 21.

Crossrefs

Cf. A238132.

Programs

  • Maple
    qP := (x,y) -> (y-1)*QDifferenceEquations:-QPochhammer(-y,x,99):
    dP := x -> (qP(x,sqrt(2)) + qP(x,-sqrt(2)))/2:
    simplify(expand(dP(x),x)): seq(coeff(%,x,n), n=0..52); # Peter Luschny, Nov 17 2016
  • Mathematica
    Simplify@(((Sqrt[2] - 1) QPochhammer[-Sqrt[2], x] - (Sqrt[2] + 1) QPochhammer[Sqrt[2], x])/2 + O[x]^53)[[3]]