This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278299 #32 May 14 2019 19:22:12 %S A278299 2,4,6,9,12,15,19,24,30,34 %N A278299 a(n) is the tile count of the smallest polyomino with an n-coloring such that every color is adjacent to every other distinct color at least once. %C A278299 Only edge-to-edge adjacencies are considered. %C A278299 The sequence is bounded above by A053439(n-1). %C A278299 a(n) is bounded below by n * ceiling((n - 1)/4). This bound is achieved for n=2, n=6, and n=10. %e A278299 Example: for n = 4, the following diagram gives a minimal polyomino of a(4) = 6 tiles: %e A278299 +---+---+ %e A278299 | 1 | 4 | %e A278299 +---+---+---+ %e A278299 | 4 | 3 | 2 | %e A278299 +---+---+---+ %e A278299 | 1 | %e A278299 +---+ %e A278299 Example: for n = 10, the following diagram gives a minimal polyomino of a(10) = 30 tiles. Note that redundant adjacencies, e.g., between 2 and 7, can exist in minimal diagrams. %e A278299 +---+---+ %e A278299 | 8 | 6 | %e A278299 +---+---+---+---+---+ %e A278299 | 3 | 2 | 5 | 9 | 4 | %e A278299 +---+---+---+---+---+---+---+---+ %e A278299 | 2 | 7 | 5 | 1 | 4 | 2 | 10| 9 | %e A278299 +---+---+---+---+---+---+---+---+ %e A278299 | 6 | 9 | 8 | 3 | 6 | 7 | 8 | 1 | %e A278299 +---+---+---+---+---+---+---+---+ %e A278299 | 10| 3 | 4 | 7 | 1 | 10| 5 | %e A278299 +---+---+---+---+---+---+---+ %e A278299 From _Ryan Lee_, May 14 2019: (Start) %e A278299 Example for n = 11: %e A278299 +---+---+---+---+---+ %e A278299 | 9 | 11| 2 | 5 | 8 | %e A278299 +---+---+---+---+---+---+ %e A278299 | 1 | 5 | 10| 9 | 2 | 1 | %e A278299 +---+---+---+---+---+---+ %e A278299 | 4 | 6 | 11| 8 | 7 | 3 | %e A278299 +---+---+---+---+---+---+ %e A278299 | 3 | 9 | 7 | 10| 6 | 2 | %e A278299 +---+---+---+---+---+---+ %e A278299 | 11| 4 | 5 | 3 | 8 | 4 | %e A278299 +---+---+---+---+---+---+ %e A278299 | 1 | 10| | 6 | 1 | 7 | %e A278299 +---+---+ +---+---+---+ %e A278299 (End) %Y A278299 Cf. A053439. %K A278299 nonn,more %O A278299 2,1 %A A278299 _Alec Jones_ and _Peter Kagey_, Nov 17 2016 %E A278299 a(11) from _Ryan Lee_, May 14 2019