This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A278311 #19 Nov 30 2016 13:11:39 %S A278311 34,86,94,122,142,171,202,214,218,245,285,302,394,429,435,446,507,603, %T A278311 604,605,634,638,698,842,922,963,1042,1075,1084,1085,1131,1138,1245, %U A278311 1262,1275,1310,1346,1402,1413,1431,1435,1449,1491,1533,1557,1587,1605,1635,1642,1676,1762,1772,1838,1886,1894,1925,1942 %N A278311 Numbers n such that n-1 and n+1 have the same number of prime factors as n (with multiplicity). %H A278311 Ely Golden, <a href="/A278311/b278311.txt">Table of n, a(n) for n = 1..10000</a> %e A278311 a(1) = 34, as 33, 34, and 35 all have 2 prime factors. %e A278311 a(2) = 86, as 85, 86, and 87 all have 2 prime factors. %o A278311 (Java) public class A278311{ %o A278311 public static void main(String[] args)throws Exception{ %o A278311 long dim0=numberOfPrimeFactors(2);//note that this method must be manually implemented by the user %o A278311 long dim1=numberOfPrimeFactors(3); %o A278311 long dim2; %o A278311 long counter=4; %o A278311 long index=1; %o A278311 while(index<=10000){ %o A278311 dim2=numberOfPrimeFactors(counter); %o A278311 if(dim2==dim1&&dim1==dim0){System.out.println(index+" "+(counter-1));index++;} %o A278311 dim0=dim1; %o A278311 dim1=dim2; %o A278311 counter++; %o A278311 } %o A278311 } %o A278311 } %o A278311 (SageMath) %o A278311 def bigomega(x): %o A278311 s=0; %o A278311 f=list(factor(x)); %o A278311 for c in range(len(f)): %o A278311 s+=f[c][1] %o A278311 return s; %o A278311 dim0=bigomega(2); %o A278311 dim1=bigomega(3); %o A278311 counter=4 %o A278311 index=1 %o A278311 while(index<=10000): %o A278311 dim2=bigomega(counter); %o A278311 if(dim2==dim1&dim1==dim0): %o A278311 print(str(index)+" "+str(counter-1)) %o A278311 index+=1; %o A278311 dim0=dim1; %o A278311 dim1=dim2; %o A278311 counter+=1; %o A278311 (PARI) isok(n) = (bigomega(n-1) == bigomega(n)) && (bigomega(n) == bigomega(n+1)); \\ _Michel Marcus_, Nov 17 2016 %Y A278311 Intersection of A045920 and A278291. %Y A278311 a(n) = A045939(n) + 1. %K A278311 nonn %O A278311 1,1 %A A278311 _Ely Golden_, Nov 17 2016