A278319 Number of n X 2 0..1 arrays with rows and columns in lexicographic nondecreasing order but with exactly two mistakes.
0, 3, 20, 94, 395, 1492, 4991, 14848, 39832, 97835, 223015, 477126, 966849, 1869504, 3470210, 6214384, 10780448, 18178763, 29884150, 48010910, 75541039, 116618372, 176923705, 264148560, 388588200, 563877795, 807899313, 1143890790, 1601794149
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0. .0..1. .1..1. .1..0. .0..0. .1..1. .1..0. .1..1. .1..0. .1..0 ..1..0. .0..0. .0..1. .1..1. .1..1. .0..1. .0..0. .0..1. .0..0. .1..1 ..1..0. .1..0. .1..1. .0..1. .1..1. .0..0. .1..0. .0..0. .0..1. .1..1 ..0..0. .0..1. .0..1. .0..1. .1..0. .1..0. .1..0. .0..0. .1..1. .1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A278325.
Formula
Empirical: a(n) = (1/39916800)*n^11 + (1/725760)*n^10 + (13/362880)*n^9 + (43/120960)*n^8 + (223/172800)*n^7 - (227/34560)*n^6 + (1019/45360)*n^5 + (27263/181440)*n^4 + (12193/113400)*n^3 - (121/840)*n^2 - (13/99)*n.
Conjectures from Colin Barker, Feb 09 2019: (Start)
G.f.: x^2*(3 - 16*x + 52*x^2 - 73*x^3 + 41*x^4 + x^5 - 10*x^6 + 3*x^7) / (1 - x)^12.
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12) for n>12.
(End)