cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278319 Number of n X 2 0..1 arrays with rows and columns in lexicographic nondecreasing order but with exactly two mistakes.

Original entry on oeis.org

0, 3, 20, 94, 395, 1492, 4991, 14848, 39832, 97835, 223015, 477126, 966849, 1869504, 3470210, 6214384, 10780448, 18178763, 29884150, 48010910, 75541039, 116618372, 176923705, 264148560, 388588200, 563877795, 807899313, 1143890790, 1601794149
Offset: 1

Views

Author

R. H. Hardin, Nov 18 2016

Keywords

Examples

			Some solutions for n=4:
..1..0. .0..1. .1..1. .1..0. .0..0. .1..1. .1..0. .1..1. .1..0. .1..0
..1..0. .0..0. .0..1. .1..1. .1..1. .0..1. .0..0. .0..1. .0..0. .1..1
..1..0. .1..0. .1..1. .0..1. .1..1. .0..0. .1..0. .0..0. .0..1. .1..1
..0..0. .0..1. .0..1. .0..1. .1..0. .1..0. .1..0. .0..0. .1..1. .1..0
		

Crossrefs

Column 2 of A278325.

Formula

Empirical: a(n) = (1/39916800)*n^11 + (1/725760)*n^10 + (13/362880)*n^9 + (43/120960)*n^8 + (223/172800)*n^7 - (227/34560)*n^6 + (1019/45360)*n^5 + (27263/181440)*n^4 + (12193/113400)*n^3 - (121/840)*n^2 - (13/99)*n.
Conjectures from Colin Barker, Feb 09 2019: (Start)
G.f.: x^2*(3 - 16*x + 52*x^2 - 73*x^3 + 41*x^4 + x^5 - 10*x^6 + 3*x^7) / (1 - x)^12.
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12) for n>12.
(End)